
Text-mining Approach for Estimating Vulnerability
Score

Daisuke Miyamoto∗, Yasuhiro Yamamoto†, Masaya Nakayama∗
∗Information Technology Center

The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, JAPAN

{daisu-mi, nakayama}@nc.u-tokyo.ac.jp

†Graduate School of Engineering
The University of Tokyo

7-3-1 Hongou, Bunkyo-ku, Tokyo 113-8656, JAPAN

Abstract—This paper develops a method that can automati-
cally estimate the security metrics of documents written in natural
language. Currently, security metrics play an important role in
assessing the impact and risks of cyberthreats. Security metrics
also enable operators to recognize emerging cyberthreats and
to prioritize operations in order to mitigate such threats. In
this paper, we focus on estimating the ratings in the Common
Vulnerability Scoring System by inspecting the threats described
in the Common Vulnerability and Exposures dictionary. Our
approach employs various techniques for processing natural
language, and it uses the descriptions in the dictionary to estimate
the base metrics. This paper also extends the algorithm to increase
the accuracy of the estimate.

Keywords—Security Information, Data Mining, Scoring

I. I NTRODUCTION

Most modern systems rely on software, and software bugs
often increase the risk that remote attackers can gain unautho-
rized access to such systems. Therefore, it is important to find
suitable methods for managing this vulnerability in order to
protect society from these attacks. However, the number of vul-
nerabilities increases along with the amount of software, since
bugs pervade every level of modern software [1]. Therefore, it
is important to share information in order to form a knowledge
base that can facilitate management of these vulnerabilities.

The National Vulnerability Database (NVD) is a popular
knowledge base. It is composed of the Common Vulnerability
and Exposures (CVE) dictionary of vulnerabilities [2] and the
Common Vulnerability Scoring System (CVSS) [3], which
estimates the impacts of those vulnerabilities.

However, the announcement of impacts can be delayed by
a day or two following receipt of reports by the Computer
Security Division of the National Institute of Standards and
Technology (NIST), the organization that manages the NVD.
This delay can potentially increase the risks, since it can delay
the awareness of serious vulnerabilities.

In this paper, we present a way to rapidly estimate the
impacts predicted by the CVSS, and we develop an automated
method for estimating these impacts. We then use techniques
for processing natural language to analyze the CVE descrip-
tions, and we classify the documents and estimate the base

metrics of the CVSS. We preformed a preliminary experiment
to determine a suitable estimation method; we compared
several machine learning algorithms: the naive Bayes classifier,
Latent Dirichlet allocation (LDA) [4], Latent Semantic Index-
ing (LSI) [5], and Supervised LDA (SLDA) [6]. As the training
dataset, we considered approximately 60,000 vulnerabilities
reported during the period January 2002 to December 2013 and
we used 1,300 definitions reported during the period January
2014 to May 2014.

We also propose a new learning algorithm that introduces
an annual parameter. Within the algorithm, the training dataset
is separated by year, and a model is generated for each year.
For each model, the algorithm assigns a weight that reflects
the annual effects of the CVE documents. Our results indicate
that this often improves the estimate.

This paper makes the following contributions:

• We propose a method for estimating the CVSS base
metrics for CVE documents.

• We perform experiments and evaluate the performance
with f1 measures.

• We observe that the SLDA gives the best performance.

• We find that the annual effect of the CVEs is a feasible
parameter for providing better estimates.

• We design an algorithm to assign weights that reflect
the annual effect.

II. RELATED WORK

This section briefly explains our analysis targets, the
CVE and the CVSS, which are presented in Sections II-A
and II-B, respectively. Section II-C introduces earlier work that
attempted to analyze the threats described by the CVE.

A. Common Vulnerability and Exposures

The CVE dictionary contains publicly known information
about security vulnerabilities and exposures [2]. It is composed
of identifiers (CVE-IDs) and the descriptions of the vulnera-
bilities. The CVE-IDs are assigned by the MITRE Corporation

TABLE I. AN EXAMPLE OF A CVE DESCRIPTION: CVE-2014-0001

<vuln:summary>
Buffer overflow in client/mysql.cc in Oracle
MySQL and MariaDB before 5.5.35 allows remote
database servers to cause a denial of service
(crash) and possibly execute arbitrary code
via a long server version string.
</vuln:summary>

TABLE II. AN EXAMPLE OF A CVSSDESCRIPTION: CVE-2014-0001

<cvss:score>7.5</cvss:score>
<cvss:access-vector>NETWORK</cvss:access-vector>
<cvss:access-complexity>LOW</cvss:access-complexity>
<cvss:authentication>NONE</cvss:authentication>
<cvss:confidentiality-impact>PARTIAL</cvss:confidentia
lity-impact>
<cvss:integrity-impact>PARTIAL</cvss:integrity-impact>
<cvss:availability-impact>PARTIAL</cvss:availability-i
mpact>

and the CVE Numbering Authorities [7]; there are currently
more than 50,000 CVE-IDs.

In this paper, we regard the CVE descriptions as explana-
tory variables. Table I shows an example of a CVE that was
reported in 2014.

B. Common Vulnerability Scoring System

The CVSS provides an open framework for communicating
the characteristics and impacts of information security vul-
nerabilities [3]. It was originally defined and commissioned
by the National Infrastructure Advisory Council [8], and it is
currently managed by the Forum of Incident Response and
Security Teams [9], which seeks to promote and improve the
framework.

According to the CVSS, there are three assessment crite-
ria: the base, temporal, and environmental metrics. The base
metrics represent the fundamental characteristics of a given
vulnerability, and they are neither time dependent nor affected
by the user’s environment. The temporal metrics reflect the
current characteristics of a vulnerability that changes over
time. The environmental metrics reflect the characteristics
of vulnerabilities that are specific to a user’s environment,
and they also reflect the potential collateral damage of the
vulnerability and the security requirement.

In this paper, for the period 1999 to 2014, we were able to
obtain the vulnerability score from the base metrics; however,
we were not able to do so for the other metrics. Therefore,
in this paper, we employ the base metrics as the objective
variable. Table II shows an example of the base metrics. The
vulnerability score ranges from 0.0 to 10.0; we consider the
scores in the range 7.0 to 10.0 to be high, those in the range
4.0 to 6.9 to be medium, and those in the range 0.0 to 3.9 to
be low. The following factors were used to calculate the base
metrics.

• Access Vector (AV) denotes the place where the vul-
nerability is accessed. This information is categorized
asLOCAL, ADJACENT NETWORK, or NETWORK.

• Access Complexity (AC) denotes the difficulty of the
conditions required to exploit the vulnerability. This
is categorized asHIGH, MIDDLE, or LOW.

TABLE III. PRELIMINARY ANALYSIS OF THE PERFORMANCE OF OUR

METHOD FOR ESTIMATING BASE METRICS

Category # NBC LSI LDA SLDA
LOCAL 115 0.607 0.086 - 0.621

AV ADJACENT NETWORK 41 - 0.067 - -
NETWORK 1158 0.962 0.609 0.981 0.962
HIGH 50 - 0.084 0.069 -

AC MEDIUM 624 0.650 0.456 0.644 0.676
LOW 640 0.715 0.124 0.009 0.718
MULTIPLE INSTANCES 5 - - - -

AU SINGLE INSTANCE 239 0.371 - - 0.451
NONE 1070 0.920 0.868 0.893 0.925
NONE 499 0.814 0.204 0.116 0.823

A PARTIAL 459 0.659 0.485 0.492 0.623
COMPLETE 356 0.667 0.005 0.033 0.693
NONE 480 0.755 0.041 0.555 0.792

C PARTIAL 565 0.742 0.573 0.266 0.708
COMPLETE 269 0.570 0.007 0.065 0.624
NONE 420 0.697 0.048 0.035 0.751

I PARTIAL 639 0.761 0.630 0.617 0.741
COMPLETE 255 0.576 - 0.025 0.622

• Authentication (AU) denotes the number of times
that the attacker must authenticate in order to exploit
the vulnerability. This is categorized asMULTIPLE
INSTANCES, SINGLE INSTANCE, or NONE.

• Availability (A) denotes the impact on the availability
of a system when the system is attacked. This is
categorized asNONE, PARTIAL, or COMPLETE.

• Confidentiality (C) denotes the impact on the confi-
dentiality of the data in a system when the system is
attacked. This is categorized asNONE, PARTIAL, or
COMPLETE.

• Integrity (I) denotes the impact on the integrity of a
system when the system is attacked. This is catego-
rized asNONE, PARTIAL, or COMPLETE.

C. Analysis of CVE

Earlier analyses of CVEs focused on extracting topics
from security vulnerability information. Neuhaus and Zimmer-
man [10] used CVEs published during the period 1999 to 2009
to analyze the trend of cyberthreats. They used the LDA [4]
to classify the CVEs into 40 categories, such as cross-site
scripting, SQL injection, and buffer overflows. Their results
showed that by eliminating these vulnerabilities and by making
PHP more secure, the majority of the CVEs were fixed.

To the best of our knowledge, no past study attempted
to analyze the CVEs in order to assess the possible impact
of a given vulnerability, and thus the CVSS score was not
calculated.

III. M ETHODOLOGY

In this paper, we decided to use the NVD [11] provided
by the NIST. The NVD consists of the CVE-IDs and descrip-
tions provided by MITRE [12] and the CVSS base metrics
calculated by the NIST team.

When extracting the CVE descriptions, we used the Porter
stemming algorithm [13] to remove the inflectional endings
from words. The list of the stopwords used in the algorithm
was available online [14].

We considered various methods to determine a suitable
algorithm for the analysis. An earlier analysis of CVEs [10]

showed that LDA [4] is a feasible method. LDA is a probabilis-
tic model for extracting topics from a corpus of documents, and
it uses dimensional reduction to determine the co-occurrence
patterns of texts within the documents. The naive Bayes clas-
sifier (NBC), a common method for classifying texts, is also
feasible. We attempted to use it with the multivariate Bernoulli
model. For the dimension reduction, we also considered the
LSI [5]. It should be noted that the NBC, LSI, and LDA each
use unsupervised learning. We also considered using SLDA [6]
to deal with the labeled documents. Since the NVD can be
regarded as a set of labeled documents, we used SLDA to
classify the vulnerability information along with the topics.

We then performed a preliminary evaluation with the aim
of using text mining to estimate the impact score. For this
evaluation, we used 10-fold cross-validation and determined
the average performance. We used thef1 measure, which is
defined as follows:

f1measure =
2 ·Recall · Precision

Recall + Precision
. (1)

The results are summarized in Table III, where the first
column denotes the factors defined above. The second column
gives the category of each factor, and the third shows the
number of the test datasets that were found to belong to each
category. The remaining columns denote thef1 measures for
the NBC, LSI, LDA, and SLDA, respectively. The symbol−
means that thef1 measure could not be calculated because
both the recall and the precision were zero. The training data
were a set of CVEs published during the period 2012 to 2013
(CVE-2012 to CVE-2013), and the test dataset was a set of
CVEs published during the period January to May 2014 (CVE-
2014).

In the preliminary evaluation, we observed that the SLDA
usually performed better than the other algorithms. We note
that the dimension reduction hindered both the LSI and the
LDA. We tried to classify the CVEs as High, Medium, or Low
without regard to genre, but we note that the topics estimated
from an unsupervised model may correspond to genres, if that
is the dominant structure in the corpus [6].

IV. A SSIGNMENT OFANNUAL WEIGHTS FOR THESLDA

In this section, we present our idea for a way to further
improve the estimate of the vulnerability score. We consider a
way to extent the SLDA algorithm by using the annual effect
of the CVEs.

A. Annual analysis for the SLDA

Figure 1 summarizes the structure of the SLDA, whered
denotes the documents,n denotes the identifier of the words,
and k denotes the identifier of the topics.D,N , and K
represent the number of the documents, words, and topics,
respectively. Like the LDA, the SLDA assigns the labelYd to
a document; this is based on the topicZd,n, which is the topic
for documentd and wordn, and the parameternη,σ2 . Note
thatα andβ are the Dirichlet parameters; the former denotes
the per-document topic distribution and the latter denotes the
per-topic word distribution.θd is the topic distribution for the
documentd, andϕk is the word distribution for the topick.

Fig. 1. Structure of the SLDA

TABLE IV. CONDITIONS FOR IDENTIFYING THE RELATIONSHIP

BETWEEN THE ESTIMATION PERFORMANCE AND THE TEMPORAL

DISTANCE

Training Data Testing Dataset # Training Data Testing Dataset
1 CVE-2013 CVE-2014 13 CVE-2007 CVE-2008
2 CVE-2012 CVE-2014 14 CVE-2006 CVE-2008
3 CVE-2011 CVE-2014 15 CVE-2005 CVE-2008
4 CVE-2010 CVE-2014 16 CVE-2004 CVE-2008
5 CVE-2009 CVE-2014 17 CVE-2003 CVE-2008
6 CVE-2008 CVE-2014 18 CVE-2002 CVE-2008
7 CVE-2007 CVE-2014 19 CVE-2001 CVE-2008
8 CVE-2006 CVE-2014
9 CVE-2005 CVE-2014
10 CVE-2004 CVE-2014
11 CVE-2003 CVE-2014
12 CVE-2002 CVE-2014

The SLDA requires two steps to predict the category.
The first is the expectation step (E-step), which estimates the
approximate posterior distribution for each document-response
pair. The next is the maximization step (M-step), which uses
the parameters calculated in the E-step to predict the label.
The SLDA is estimated as follows:

E
[
Yd∥ω1:N , α, β1:K , ηd, σ

2
]
= ηTd E [Zd,i:N∥ω1:N] . (2)

Fig. 2. Availability: Results for the relationship between the estimation
performance and the temporal distance

TABLE V. PERFORMANCE OF THE BASICSLDA AND THE ANNUAL

WEIGHT-ASSIGNMENT ALGORITHMS

Category # SLDA (linear) (sigmoid)
LOCAL 115 0.649 0.663 0.637

AV ADJACENT NETWORK 41 - - -
NETWORK 1158 0.964 0.960 0.960
HIGH 50 - - -

AC MEDIUM 624 0.609 0.636 0.669
LOW 640 0.731 0.769 0.765
MULTIPLE INSTANCES 5 - - -

AU SINGLE INSTANCE 239 0.622 0.303 0.506
NONE 1070 0.940 0.914 0.931
NONE 499 0.783 0.860 0.855

A PARTIAL 459 0.597 0.726 0.707
COMPLETE 356 0.632 0.694 0.695
NONE 480 0.781 0.794 0.798

C PARTIAL 565 0.701 0.761 0.742
COMPLETE 269 0.562 0.653 0.634
NONE 420 0.708 0.753 0.750

I PARTIAL 639 0.741 0.780 0.770
COMPLETE 255 0.571 0.634 0.622

We assumed that the estimate could be improved by
assigning weights to the training dataset. A previous study [10]
indicated that there might be a trend in the vulnerability
information. Our key idea was to assign higher weights to
more recently published CVEs.

To assess our hypothesis, we conducted a set of experi-
ments for identifying the relationship between the accuracy
of the estimate and the temporal distance. The experimental
conditions are shown in Table IV, where each condition is
assigned a number. For example, in Condition 1, we used CVE-
2014 as the test data and CVE-2013 as the training data. We
then used the SLDA to calculate thef1 measure.

The results are shown in Figure 2, where the black
shapes are used for the CVE-2014 test data (Conditions #1-
12), and the white shapes are used for the CVE-2008 test
data (Conditions #13-19). For clarification, we will focus our
discussion on the performance of estimating the Availability.
We classified the Availability of the CVEs asNONE (circles),
PARTIAL (triangles), orCOMPLETE(squares). We observed
that the estimation performance was correlated with the tem-
poral distance. The results for the other base metrics exhibited
a similar trend, and hence, we considered the possibility that
the estimation might be affected by the annual effect of the
CVEs.

B. Annual weight assignment algorithms

This section describes our weight-assignment algorithms
for the temporal distance of the CVEs, based on the experi-
ments described in Section IV-A.

Figure 3 presents the key differences when the weights are
added to the structure of the SLDA. In the SLDA,ϕd andηd for
documentd are defined during the estimation. Our algorithms
determines the parameters(ϕd, ηd) and the annual effect of
the CVEs. In addition, our algorithm incorporates the annual
parameterωd for (ϕd, ηd), and it then estimates the label.

The training data consisted of CVE-2002,· · ·, CVE-2013,
and the test data were CVE-2014. We calculated twelve sets
of the parameters(ϕd, ηd), and we used either a linear or a
sigmoid function to assign weights for each parameter. The
predicted valueYpredicted can be calculated as

Ypredicted = arg max(evaluated value(Yd)), (3)

Fig. 3. Assignments of weights for the SLDA

whereevaluated value(Yd), where documentd ∈ CVE-2014,
can be calculated as

evaluated value(Yd) =
2013∑

k=2002

ηd,k · ϕd,k · ωk. (4)

We calculated the annual parameterωd for a linear function
(Equation 5) and for a sigmoid function (Equation 6):

ωk =
(k − 2001)

12
(5)

ωk =
1

1 + egain(−1+2(k−2001)/k)
(6)

wherek ∈ (2002, · · · , 2013). The results are summarized in
Table V, where the first column lists the base metrics, the
second column lists the category, the third lists the number of
test datasets classified into that category, the fourth denotes the
f1 measures for the SLDA, and the fifth and sixth columns list
the performance obtained when an annual weight-assignment
algorithm that is linear of sigmoid, respectively.

In many cases, our algorithms performed better than did
the basic SLDA. Our algorithms gave better estimates of
the Availability, Confidentiality, and Integrity. In the cases
of Access Complexity and Access Vector, we observed that,
in some categories, the SLDA performed better than our

TABLE VI. CWE AND CVSS BASE METRICS

CWE id 16 20 22 59 78 79 89 94 119 134

LOCAL 0.18 0.12 0.02 0.90 0.05 0.00 0.00 0.02 0.07 0.12
AV ADJACENT NETWORK 0.03 0.02 0.00 0.00 0.05 0.00 0.00 0.00 0.01 0.00

NETWORK 0.78 0.86 0.98 0.10 0.89 1.00 1.00 0.98 0.92 0.88

HIGH 0.07 0.03 0.03 0.09 0.05 0.05 0.01 0.03 0.05 0.04
AC MEDIUM 0.37 0.43 0.29 0.75 0.26 0.95 0.09 0.50 0.53 0.35

LOW 0.56 0.54 0.67 0.16 0.69 0.00 0.90 0.46 0.43 0.60

MULTIPLE INSTANCES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AU SINGLE INSTANCE 0.07 0.10 0.10 0.02 0.30 0.10 0.07 0.07 0.04 0.06

NONE 0.93 0.90 0.90 0.98 0.70 0.90 0.93 0.93 0.96 0.94

NONE 0.40 0.20 0.48 0.15 0.01 1.00 0.00 0.04 0.01 0.01
A PARTIAL 0.33 0.43 0.42 0.36 0.18 0.00 0.99 0.59 0.34 0.58

COMPLETE 0.27 0.36 0.10 0.49 0.82 0.00 0.00 0.36 0.65 0.41

NONE 0.33 0.49 0.09 0.38 0.03 0.99 0.00 0.04 0.15 0.20
C PARTIAL 0.45 0.28 0.76 0.18 0.18 0.00 0.99 0.59 0.24 0.42

COMPLETE 0.23 0.23 0.15 0.44 0.80 0.00 0.00 0.36 0.61 0.37

NONE 0.33 0.45 0.41 0.06 0.03 0.00 0.00 0.02 0.15 0.16
I PARTIAL 0.47 0.33 0.49 0.45 0.18 1.00 0.99 0.62 0.24 0.47

COMPLETE 0.21 0.22 0.10 0.50 0.79 0.00 0.00 0.36 0.61 0.37

CWE id 189 200 255 264 287 310 352 362 399

LOCAL 0.12 0.17 0.24 0.27 0.05 0.09 0.00 0.64 0.12
AV ADJACENT NETWORK 0.02 0.01 0.03 0.02 0.03 0.47 0.00 0.02 0.02

NETWORK 0.86 0.81 0.73 0.71 0.92 0.44 1.00 0.34 0.86

HIGH 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.26 0.02
AC MEDIUM 0.48 0.26 0.22 0.30 0.28 0.67 0.95 0.52 0.35

LOW 0.49 0.71 0.75 0.66 0.69 0.30 0.02 0.22 0.63

MULTIPLE INSTANCES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AU SINGLE INSTANCE 0.04 0.09 0.10 0.20 0.08 0.03 0.06 0.03 0.06

NONE 0.96 0.91 0.90 0.80 0.92 0.97 0.94 0.97 0.94

NONE 0.04 0.94 0.56 0.43 0.31 0.36 0.10 0.22 0.01
A PARTIAL 0.47 0.04 0.21 0.31 0.48 0.58 0.88 0.23 0.49

COMPLETE 0.49 0.02 0.23 0.26 0.20 0.06 0.02 0.55 0.50

NONE 0.31 0.02 0.09 0.20 0.15 0.12 0.12 0.27 0.56
C PARTIAL 0.30 0.89 0.63 0.55 0.65 0.81 0.86 0.22 0.16

COMPLETE 0.39 0.09 0.28 0.26 0.20 0.07 0.02 0.51 0.28

NONE 0.32 0.93 0.47 0.27 0.19 0.27 0.00 0.39 0.58
I PARTIAL 0.29 0.05 0.30 0.48 0.63 0.68 0.98 0.21 0.15

COMPLETE 0.39 0.01 0.23 0.25 0.19 0.05 0.02 0.40 0.27

TABLE VII. PRELIMINARY PERFORMANCE ANALYSIS FOR THE

TWO-STEP ESTIMATION METHOD

Category # Two-Step
LOCAL 115 0.336

AV ADJACENT NETWORK 41 0.020
NETWORK 1158 0.874
HIGH 50 0.086

AC MEDIUM 624 0.404
LOW 640 0.103
MULTIPLE INSTANCES 5 0.000

AU SINGLE INSTANCE 239 0.449
NONE 1070 0.924
NONE 499 0.618

A PARTIAL 459 0.459
COMPLETE 356 0.495
NONE 480 0.523

C PARTIAL 565 0.601
COMPLETE 269 0.523
NONE 420 0.591

I PARTIAL 639 0.602
COMPLETE 255 0.474

algorithms, and it did so in all categories in the case of
Authentication. However, of the 18 categories, in 13 cases,
our algorithm with the linear function performed better than
the SLDA, and in 12 cases, this was true of our algorithm with
the sigmoid function. Hence, we believe that our algorithms
can improve the estimation performance.

V. D ISCUSSION

A. Towards an accurate estimation

In this study, we have searched for a method to more
accurately predict the CVSS metrics. As shown in Section IV,
we employed a weight assignment based on the year of the
CVEs. This section explains some potential approaches to
improving the accuracy.

Besides the CVSS and CVE, Common Weakness Enu-
meration (CWE) [15] hints at ways to assess the impact of
the vulnerability. Table VI shows the relationship between
the CWE identifier and the CVSS base metrics; the number
denotes the percentile of the distribution. Consider a vulnera-
bility categorized as CWE-ID = 89 (SQL Injection). In almost
all cases, the base metrics could be guesstimated accurately:
Attack Vector is NETWORK, Access Complexity isLOW,
Authentication isNONE, and the Availability, Confidentiality,
and Integrity impacts arePARTIAL, PARTIAL, andPARTIAL,
respectively. The cases of CWE-ID = 79 (Cross-Site Scripting)
and CWE-ID = 352 (Cross-Site Request Forgeries) are similar.

From the above observation, we considered that if a CWE-
ID were assigned to the vulnerability information, it might
be possible to improve the accuracy. We also speculated
that it might be possible to create a two-step method that
estimates the CWE-ID from the description and then use this
to estimate the CVSS base metrics. The resultingf1 measures
are shown in Table VII. Compared to the SLDA, we observed

an improved performance for the CVE documents for which
the Availability wasHIGH and the Access Complexity was
ADJACENT NETWORK. Unfortunately, the SLDA performed
better than the two-step method in the other cases. As an area
of future work, we want to find a way to predict a particular
CWE.

B. Behind the annual effect of the CVE

This section considers the background of the assumption
that there was a correlation between estimation performance
and temporal distance.

According to a report by the SANS institute [16], the
serious cyberthreats reported in the first decade of the 2000s
targeted operating systems and their default installed services.
For example, CVE-2001-0500 described the vulnerability in a
Web service for Windows that allows remote attackers to pene-
trate, i.e., the CodeRed worms [17]. CVE-2002-0649 describes
the Slammer worm [18], which exploits Microsoft’s SQL
services; CVE-2003-0352 describes the Blaster worm [19],
which exploits Microsoft’s RPC services; and CVE-2003-
0533 describes the Sasser worm [20], which exploits the
Active Directory service; all of these targets are part of Mi-
crosoft Windows operating systems. In addition, CVE-2002-
0392 describes the Scalper worm, which exploits an Apache
web service; CVE-2001-0011 describes the Lion worm, which
exploits a BIND DNS service; and CVE-2002-1337 describes
a vulnerability in the Sendmail email services. The modus
operandi for all of these attacks was a buffer overflow, in
which the data stored in the stack area of the computer are
overwritten. These data are not only read/write-able, but also
executable. If these attacks are successful, the attacker can run
an arbitrary program on the host computer. In order to mitigate
the risks of a buffer overflow, source code validation tools [21],
[22], compilers [23], [24], and CPU supports, such as eXecute
Disable/No eXecute, have been developed.

Instead of operating systems and their default installed
services, web browsers and applications became the primary
target during the middle of the first decade of the 21st century.
In 2007, the most critical vulnerability in a client computer
was ActiveX, the browser extension of Microsoft’s Internet
Explorer. According to a report by AV-test [25], attackers
tended to target Java, Adobe Flash, and PDF, all of which
were available as browser extensions. The modus operandi for
these attacks was heap spraying, rather than buffer overflows.
In addition to client computers, host computers also suffered
attacks, primarily SQL injection, script injection (cross-site
scripting), and OS command injection.

We concluded that the threats vary by decade. In order
to better estimate the performance for CVE-2014, it can be
assumed that it is better to train using CVE-2013 than to train
using CVE-2002. Therefore, an annual weighting might be
feasible in terms of both cybersecurity and statistics.

VI. CONCLUSION

This paper attempted to use CVE documents to estimate
the impact of vulnerability information. Our motivation is
that an automated assessment of the impacts would facilitate
vulnerability management by helping notify security operators
of severe threats and helping them prioritize their response.

We postulated that an automated risk assessment based on
vulnerability documents written in natural language could be
of great assistance to these operators.

Our analysis was based on machine learning techniques,
and we found that there was a correlation between the
estimation performance and temporal distance of the CVE
documents. That is, when estimating the impact of a CVE
reported in 2014, knowledge of a CVE reported in 2013 is
likely to be more meaningful than a CVE reported in 2002.
In short, there was an annual effect both from statistical and
cybersecurity points of view.

We therefore proposed an algorithm to assign an annual
weight within the SLDA algorithm. In this paper, we intro-
duced both linear and sigmoid functions for the weight assign-
ment, and we showed that these could improve the estimation
performance. In 13 of the 18 categories, our algorithm with
the linear function performed better than the SLDA, and in 12
cases, our algorithm with the sigmoid function gave the better
performance.

The remaining issue is to estimate the impact of a com-
pletely novel vulnerability. Since attackers also develop new
methodologies to exploit software, this risk cannot be ignored.
For such new attacks, our analysis, which is based on machine
learning, would not work efficiently; it may be necessary to in-
clude the expert knowledge of experienced security operators.
Our methodologies will mitigate the effects of cyberthreats by
reinforcing operators’ decisions and providing better estima-
tions of the vulnerabilities.

ACKNOWLEDGMENTS

This research was supported by the Strategic International
Collaborative R&D Promotion Project of the Ministry of
Internal Affairs and Communication, Japan, and by the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. 608533 (NECOMA). The opinions
expressed in this paper are those of the authors and do not
necessarily reflect the views of the Ministry of Internal Affairs
and Communications, Japan, or of the European Commission.

REFERENCES

[1] D. A. Ramos and D. Engler, “Under-Constrained Symbolic Execution:
Correctness Checking for Real Code,” inProceedings of the 24th
USENIX Security Symposium, August 2015, pp. 49–63.

[2] MITRE Corporation, “Common Vulnerability and Exposure,” Available
at: https://cve.mitre.org.

[3] P. Mell, K. Scarfone, and S. Romanosky, “A Complete Guide to the
Common Vulnerability Scoring System Version 2.0,” Available at: https:
//www.first.org/cvss/cvss-guide, June 2007.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of Machine Learning Research, vol. 3, no. 5, pp. 993–1022,
2003.

[5] S. Deerwester, S. T. Dumais, and R. Harshman, “Indexing by Latent
Semantic Analysis,”Journal of The American Society for Information
Science, vol. 41, no. 6, pp. 391–407, 1990.

[6] D. M. Blei and J. D. McAuliffe, “Supervised topic models,” inProceed-
ings of the 21st Annual Conference on Neural Information Processing
System, December 2007, pp. 121–128.

[7] CNA, “CVE Numbering Authorities,” Available at: https://cve.mitre.
org/cve/cna.html.

[8] The Department of Homeland Security, “National Infrastructure
Advisory Council,” Available at: http://www.dhs.gov/
national-infrastructure-advisory-counci.

[9] FIRST.org, “Forum of Incident Response and Security Teams,” Avail-
able at: https://www.first.org.

[10] S. Neuhaus and T. Zimmermann, “Security Trend Analysis with CVE
Topic Models,” inProceedings of the 21st International Symposium on
Software Reliability Engineering (ISSRE), November 2010, pp. 111–
120.

[11] National Institute of Standards and Technology, “National Vulnerabilty
Database,” Available at: https://nvd.nist.gov.

[12] MITRE, “The MITRE Corporation,” Available at: http://www.mitre.org.

[13] M. F. Porter, “An Algorithm for Suffix Stripping,”Program, vol. 14,
pp. 130–137, 1980.

[14] M. Chaput, “stemming,” Available at: https://pypi.python.org/pypi/
stemming.

[15] MITRE Corporation, “Common Weakness Enumeration,” Available at:
https://cwe.mitre.org.

[16] SANS Institute, “SANS Information Security Training,” Available at:
http://www.sans.org.

[17] Microsoft, “Unchecked Buffer in Index Server ISAPI Extension Could
Enable Web Server Compromise (MS01-033),” Available at: https://
technet.microsoft.com/library/security/ms01-033, June 2001.

[18] ——, “Elevation of Privilege in SQL Server Web Tasks (MS02-061),”
Available at: https://technet.microsoft.com/library/security/ms02-061,
October 2002.

[19] ——, “Buffer Overrun In RPC Interface Could Allow Code Execution
(MS03-026),” Available at: http://www.microsoft.com/technet/security/
bulletin/MS03-026.asp, July 2003.

[20] ——, “Security Update for Microsoft Windows (MS04-011),” Available
at: https://technet.microsoft.com/library/security/ms04-011, April 2004.

[21] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” inProceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, June 2007, pp. 89–100.

[22] D. Evans and D. Larochelle, “Improving Security Using Extensible
Lightweight Static Analysis,”IEEE Software, vol. 19, no. 1, pp. 42–51,
2002.

[23] P. Wagle and C. Cowan, “StackGuard: Simple Stack Smash Protection
for GCC,” in Proceedings of the GCC Developers Summit, May 2003,
pp. 243–255.

[24] H. Etoh and K. Yoda, “ProPolice: Improved Stack-smashing Attack
Detection,” IPSJ Journal, vol. 43, no. 12, pp. 4034–4041, 2002, (in
Japanese).

[25] AVTEST, “Adobe & Java Make Windows Insecure,”
Available at: http://www.av-test.org/en/news/news-single-view/
adobe-java-make-windows-insecure, December 2013.

