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1
Introduction

This deliverable is a detailed account of the different threat analysis, rating,
and classification mechanisms developed by the members of the NECOMA
consortium. It also reports the general architecture and design principles of
the NECOMA threat analysis platform.

The data aggregation and analysis (Chapter 2) mechanisms are de-
signed according to the various datasets collected by the NECOMA consor-
tium, hence, for each data type and layer considered in the consortium at
least one analysis method is studied. These methods are classified into four
categories:

• Backbone and telescope traffic analysis (Section 2.1) consists mainly
of anomaly detection algorithms to inspect significant traffic collected
at the infrastructure layer, namely backbone links and telescopes. Usu-
ally based on unsupervised techniques, anomaly detectors identify first
evidence of malicious activities.

• Large-scale DNS traffic analysis (Section 2.2) takes advantage of the
ubiquitous Internet Domain Name System (DNS) to identify threats.
As DNS is commonly utilized by most network applications, the analy-
sis of DNS traffic enables us to systematically monitor and characterize
various applications and distributed systems, especially malwares and
botnets.

• End-point threat data analysis (Section 2.3) is the detailed examina-
tion of data collected from sensitive end systems that are prone to at-
tacks. The developed techniques are usually bound to the mechanisms
of specific applications or protocols and they yield concrete results for
specific threats.

• Cross-layer threat analysis (Section 2.4) leverages the benefits of mul-
tiple datasets by performing transverse analysis of different data types.
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CHAPTER 1. INTRODUCTION

Bridging datasets across different layers reveals new insights into threat
analysis and is one of NECOMA main motivations.

Chapter 3 proposes rating and classification mechanisms to automat-
ically sort and prioritize significant threats. As the NECOMA platform is
expected to report suspicious events at a fast rate, this is a crucial task that
permits to uncover threats of prime importance and address them first.

The advances presented in this document provide us with a better under-
standing of the requirements and constrains of NECOMA platform compo-
nents. Therefore, Chapter 4 presents an updated version of the architecture
and design principles of the NECOMA threat analysis platform, as well as
the current hadoop subsystem implementation.
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2
Development of threat data aggregation and analysis

mechanisms

2.1 Backbone and telescope traffic analysis

Measuring Internet traffic at core infrastructures enables network operators
to monitor activities of numerous connected devices and detect network-
wide undesirable traffic. To identify the distinctive characteristics of mali-
cious activities from the large amount of collected data, network operators
usually rely on detection tools based on anomaly detection techniques. In
a nutshell, these tools build a reference model corresponding to the normal
traffic behavior and they report traffic deviating from the computed model.

NECOMA is leveraging these techniques to identify malicious activities
in the data collected at backbone links and telescopes. The benefits of iden-
tifying threats in these datasets is to observe hosts behavior at a coarse scale
and monitor remote hosts that are otherwise not accessible to the NECOMA
consortium. Therefore, we expect to gain a broad understanding of ob-
served malicious activities from our analysis of the backbone and telescope
traffic that could be refined by the analysis of data from other layers.

The following presents part of the research achieved towards the anal-
ysis of the NECOMA backbone and telescope traffic. It includes two unsu-
pervised anomaly detectors for backbone traffic, a MapReduce framework
to detect anomalies in real-time, a visualization tools to assist in inspecting
the detection results, as well as a taxonomy for telescope traffic.

2.1.1 Backbone Traffic Anomaly Detection with S-transform and
Sketches

Overwhelmed by the increasing amount of IP traffic, network operators rely
on anomaly detectors to automatically identify harmful events that occur
on backbone networks. Unsupervised detection techniques are especially
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CHAPTER 2. DATA AGGREGATION AND ANALYSIS

Figure 2.1: Constructing sketches by five hash functions.

attractive as they require no prior knowledge and are easier to deploy. In
[73] we propose an anomaly detection method based on entropy time-series,
sketches and the S-transform. Sketching traffic entropy time-series allows us
to capture fine-grained traffic patterns of sub-streams. Then, S-transform
analysis is performed on the sub-stream’s entropy to detect anomalous traf-
fic.

2.1.1.1 Sketches and Entropy

IP traffic stream is comprised of packets that have four basic attributes:
source IP, destination IP, source port, and destination port. In this stage,
an attribute stream, e.g., source IP stream, is divided into sub-streams by
hashing. More specifically, all attributes in a time-bin are hashed inde-
pendently by different hash functions, and stored in a sketch, which is a
two-dimensional array: each row is associated to a hash function, and the
columns are hash buckets, which store the attributes that have bucket num-
ber as hash keys. Figure 2.1 shows five continuous sketches that are be-
ing constructed in five time-bins by five hash functions, where the input
is the source IP stream, and the number of buckets per hash function is
five. Next, we compute the Shannon entropy of attributes in each bucket
by H(X) = −

∑i=0
n pilog2pi, where pi is the probability of attribute xi in

the bucket, and it is calculated by the frequency of the attribute xi divided
by the frequency of all attributes in the bucket. The reason we consider
the entropy instead of volumes of the attributes, e.g., total number of bytes
associated with all attributes in a bucket, is that the entropy provides more
fine-grained information of traffic data. Formally, we define entropy signal
as a vector of the time-varying entropy of a bucket number.

www.necoma-project.eu 8 November 30, 2014



2.1. BACKBONE AND TELESCOPE TRAFFIC ANALYSIS

Figure 2.2: Detecting suspicious time-bins from the entropy signal of a sub-
stream.

2.1.1.2 Detecting Suspicious Time-bins

This stage detects suspicious time-bins of each sub-stream. Typically, anoma-
lies are defined as events that behave differently from major behavior. In
others words, anomalies refer to changes. In this work, we do not detect
changes in the entropy signal of a sub-stream but detect changes in the spec-
trum of entropy signal using S-transform, which is a time-frequency analysis
tool like Wavelet transform but produces an output that is easier for analysis
and retains absolute phase information of an input signal.

Firstly, the entropy signal is normalized by subtracting its mean value.
Secondly, the S-transform converts the normalized signal and produces a
matrix indicating frequency spectrum of the signal including time infor-
mation. The columns of the matrix represent time-bins corresponding to
time-bins of the sketches, the rows represent frequencies and the element
is frequency amplitude. In order to determine suspicious time-bins, we pro-
duce two additional time-series that are obtained by vertically summing all
matrix elements in: 1) the upper half, and 2) the lower half of the matrix.
Time-bins in the time-series that hold values above a given upper thresh-
old value or below a lower threshold value will be determined as suspicious
time-bins of the particular sub-stream. The detection process is illustrated
in Figure 2.2, in which the suspicious time-bins are highlighted in black. In
order to accomplish this stage, all entropy signals are examined to identify
suspicious time-bins.

2.1.1.3 Finding Intrinsic Culprits

The suspicious time-bins contain culprits of anomalies. In order to find these
culprits, we combine all the attributes in the suspicious time-bins of each
hash function by taking the union. Intrinsic culprits that are hidden among
these suspicious attributes are determined by taking the intersection among
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CHAPTER 2. DATA AGGREGATION AND ANALYSIS

Figure 2.3: Accuracy rate (a) and False positive rate (b) in detecting anoma-
lous source and destination IPs, source and destination ports in MAWI traces
of January, 2010.

all the hash functions. The attributes in the intersection results are the
intrinsic culprits of the traffic stream and are reported as malicious.

2.1.1.4 Evaluation

We evaluated our method with high-speed backbone traces of the MAWI
archive [2] and used the MAWILab labels as benchmark [32]. We set the
method parameters as follows: the number of hash functions to construct
the sketches is three, and the number of hash buckets and time-bin size are
set to 64 and one second respectively. In addition, two performance metrics
were considered, i.e., detection accuracy and false positive rate, which are
defined as follows,

• Accuracy rate, the ratio between the total number of anomalies that
were correctly detected by our method and the total number of anoma-
lies that were classified by the MAWILab.

• False positive rate, the total number of normal instances that were in-
correctly detected as anomalies by our method and the total number
of normal instances in the trace.

Figure 2.3(a) and (b) plot the accuracy and false positive rates in de-
tecting anomalous source and destination IPs, source and destination ports
in 30 traces collected in January, 2010. Note that the accuracy and false
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2.1. BACKBONE AND TELESCOPE TRAFFIC ANALYSIS

positive rates of January 25’s trace are not shown because the labels for this
trace are unavailable. The plots show that the overall accuracy rate is above
60%, and in some traces, our method succeeds in detecting anomalies with
100% accuracy. The false positive rate in detecting anomalous source IPs is
low and stable at about 3%. The false positive rates in detecting anoma-
lous source and destination ports are about 12%. The false positive rate in
detecting anomalous destination IPs is ambivalent.

2.1.2 Detection of synchronized sources

When a victim of a DDoS attack tries to protect himself, understanding the
nature of the attack is always one of the first steps. Identification of IP
addresses being part of the attack can be useful depending on the type of
the attack, especially for the attacks that are,

• requiring the use of real IP addresses (e.g. attacks requiring the setup
of TCP session to send application layer requests), and

• launched using botnets.

In this work we aim to provide one tool addressing the identification
of machines taking part in the attack. The idea is to look at the volume of
requests generated by a given source and compare it to the overall volume of
observed requests and the hypothesis on which we build is that bots taking
part in an attack have a behavior that is closely correlated to other bots, and
to the macroscopic evolution of the request volume in a relatively short time
window containing data for both before/after attack and during the attack.

We consider intervals of length t, use i as index of interval; and for each
contributor c, we denote its contribution during interval i as rc,i and use rck,i
for the number of requests for kth contributor during the interval i. Now we
can obtain the the covariance of contributor c’s contribution with respect to
the total amount of requests Ri during interval i in the following manner,

cov (c) =
n∑

i=0

(
rc,i − r0c

) (
Ri −R0

)
, where

r0c =
1

n+ 1

n∑
i=0

rc,i ,

R0 =
1

n+ 1

n∑
i=0

Ri , and

Ri =
P∑

k=0

rck,i .
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CHAPTER 2. DATA AGGREGATION AND ANALYSIS

This covariance is large for contributors whose behavior deviates from
their average behavior at same moments as the global behavior deviates
from the global average, the deviations being in the same direction.

The analysis consists of following procedures,

1. identification of suitable analysis window, ideally containing 50/50
ratio of intervals before/after the attack and during the attack,

2. establish the covariance cov (c) for all contributors c,

3. sort the contributors according to the covariance,

4. prune out the contributors one by one starting from the one with high-
est covariance,

5. stop when the remaining contributors’ covariances are below a given
threshold L.

Figure 2.4: Number of requests per second for baseline traffic without bots
in green and for total activity including bots in red. The attack is active both
in the beginning and in the end of the window.

Figure 2.4 shows an example of the global behavior in terms of requests
per second, including normal and bot activity in red. Shown the green
line is the baseline activity without the bots, while bots are active in the
beginning and end of the analysis window. If we prune out the the individual
contributors with the covariances above the threshold L, we end up with the
baseline activity. That says, we are able to explain the deviation from the
baseline by a set of contributors.
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2.1. BACKBONE AND TELESCOPE TRAFFIC ANALYSIS
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Figure 2.5: Overview of Hashdoop. In this example the original trace con-
tains 5 splits that are hashed in N = 3 buckets. Each bucket is indepen-
dently analyzed by a detector and results of all detectors are summarized in
the anomaly report. Note that here traffic is hashed only once for clarity but
in fact Hashdoop produces 2N buckets for source and destination hashes.

2.1.3 A MapReduce Framework for Anomaly Detection in Back-
bone Traffic

To cope with the global growth of Internet and obtain the results of anomaly
detectors with reasonable latency, the traffic traveling at Internet backbone
is usually sampled [14]. However, sampling is inherently detrimental to
anomaly detection, as it deliberately discards traffic that may be anomalous.

Motivated by the need of analyzing large datasets, various research com-
munities have developed efficient tools using the MapReduce model [26].
We investigated the benefits of MapReduce to achieve real time anomaly
detection with non-sampled traffic, because we observed that available im-
plementations such as Hadoop MapReduce [85] provide high scalability and
fault tolerance, which are crucial and desirable features for anomaly detec-
tion. However, we found fundamental contradictions between Hadoop data
distribution and the requirements of anomaly detectors. As in the MapRe-
duce model data is conceptually record-oriented, Hadoop divides datasets
into splits (i.e. subsets of records) and distributes them in the cluster to be
independently processed. All the splits of a dataset have the same size in
order to synchronize the processing end time of all the nodes. In the case
of network traffic, a split usually represents a subset of packets [54], but
related packets may spread across different splits, thereby dislocating traffic
structures that are essential for anomaly detectors. For example, anomaly
detectors can identify DDoS attacks because of the numerous requests sent
to the same service. However, detecting this kind of attack with only a sub-
set of the requests is notably more difficult.
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CHAPTER 2. DATA AGGREGATION AND ANALYSIS
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(b) Speed-up for Astute

Figure 2.6: Packet count based detector and Astute speed-up with Hash-
doop.

2.1.3.1 Hashdoop

To overcome this issue, we take advantage of a hash function to divide traffic
into splits that preserve the spatial and temporal traffic structures, and a spe-
cific scheme termed Hashdoop was proposed in [34], which is a MapReduce
framework that splits data with a hash function and processes numerous
anomaly detectors in parallel. As shown in Figure 2.5, Hashdoop consists
of two steps that are implemented as two distinct MapReduce programs:
(1) using hash function the traffic is divided into splits (hereafter called
buckets) where both the spatial and temporal properties of the traffic are
preserved; (2) anomaly detectors are run with each split of data, and the
results collected and reported to network operators.

Traffic hashing. The traffic is hashed twice, once with source IP address as
key and once with destination IP address as key, thus assuring that the
traffic sent or received by certain host fall in a single bucket. The hash
function we employ is the cyclic redundancy check (CRC) algorithm
which is commonly used for traffic load balancing [17].

Anomaly detection. Using traffic hashing makes the MapReduce implemen-
tation of a network traffic anomaly detector fairly straightforward.
The map procedure implements the anomaly detection for a single
bucket and results for all buckets are summarized by the reduce pro-
cedure. The key advantage of Hashdoop is that virtually any classical
anomaly detector can be used for the map procedure.
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2.1. BACKBONE AND TELESCOPE TRAFFIC ANALYSIS

2.1.3.2 Speed-up

The proposed framework preserves all the advantages of the MapReduce
model and can be virtually used with any network traffic anomaly detec-
tor. To evaluate its performance, we conducted a set of experiments with
traffic measured at a trans-Pacific link (i.e. MAWI archive [2]), and two
anomaly detectors were applied: a packet count based detector and a traffic
stationarity based detector called Astute [77]. Using a local 6-node cluster,
Hashdoop achieves a maximum speed-up of 3.5 with the packet count based
detector and 15 with Astute (see Figure 2.6). In other words, the packet
count based detector throughput has been improved from 360k packets per
second (pps) to 1.27 Mpps, and, for Astute from 25 kpps to 375 kpps. As
a result, a 900 seconds trace that was originally analyzed in 1296 seconds
with the classical version of Astute could be processed in 216 seconds on
Hashdoop. Clearly, this detector is more interesting for real-time anomaly
detection. Using Hashdoop we also observed an overall improvement of
detection accuracy as anomalies are filtered in splits with less background
traffic.

2.1.4 Visual Comparison of Backbone Traffic Anomaly Detectors

Anomaly detection in backbone traffic has received a lot of attention from
the research community and led to various proposals relying on diverse sta-
tistical methods such as wavelet [8], Kalman filters [78], hash projection
[12, 27, 49], Principal Component Analysis (PCA) [46, 52], pattern recog-
nition [33]. Due to this variety of theoretical background, these methods
behave differently with traffic fluctuations and parameter tunings, also they
report anomalies with diverse characteristics. It is however critical for net-
work administrators to understand the behavior of detectors so they can
efficiently inspect the detection results. The current efforts towards this
goal are limited to those techniques used for performance evaluation.

Here, our goal is to help network administrators expand their under-
standing on the behavior of network anomaly detectors. This task is labori-
ous because detector outputs are usually composed of numerous anomalies.
It becomes even more complicated when one intends to analyze simultane-
ously the outputs of several detectors, either to evaluate their performance
or to compare their results. To this end, we leverage advanced visualiza-
tion techniques to assist network administrators in analyzing detection re-
sults. The major advantage of using visualization tools is to make a large
amount of information concisely represented. In our case, it allows one to
assess whether the output of a single detector is similar to a broad consensus
among several detectors.

We propose several visualization-based analysis methods based on chord
diagrams to provide in-depth analysis of the results obtained from several
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Figure 2.7: Intersection of alarm sets between all 4 detectors (unit is equal
to 1000 alarms, e.g.: 100→ 100000). Detectors’ detection results are repre-
sented as arcs and links or ribbons connect arcs together in order to display
similarities.

detectors [57]. A chord diagram is composed of several arcs located on a
circle (refer to Figure 2.7), where the arcs can be labeled and represent the
elements to be compared, and links (a.k.a. ribbons) are inside the circle and
connect arcs together in order to display similarities.

In our use case, detection results are displayed as arcs, while the links
between the arcs represent the similarities between detection results. Also,
ribbon width represents the actual number of anomalies detected by both
arcs. Note that ribbons are sometimes superimposed but that does not mean
that ribbons intersect between themselves. In other words, intersections of
anomaly set intersection between detectors are not represented by overlaps
between ribbons.

It is clear that our proposed approach enables a detailed comparison of
detectors outputs. We then applied our proposal to four anomaly detectors
used in MAWILab [32], a set of anomalies identified in real backbone traffic
traces from the publicly available MAWI dataset. We also analyzed four
years of traffic to validate the efficiency of the proposed methods.

Our results show that: (1) the four analyzed detectors exhibit two differ-
ent behaviors regarding parameter settings; (2) detectors identify different
types of anomalies; (3) using chord diagrams we could better tune the pa-
rameters of the detectors and maximize their output overlap (see Figure
2.7); and, (4) we improved by approximately 19 percentage points MAW-
ILab results through detectors settings tuning.

www.necoma-project.eu 16 November 30, 2014



2.1. BACKBONE AND TELESCOPE TRAFFIC ANALYSIS

2.1.5 Taxonomy of telescope traffic

Providing an opportunity to view and detect remote network security events,
darknet [65][87] (a.k.a., network telescope [62]) has drawn much atten-
tion of research community. Darknet consists of globally routable but still
unused IP address blocks in which no legitimate traffic exists. However,
monitoring of those blocks reveals that unexpected packets keep arriving at
darknet from a wide range of sources. These unwanted packets destined
to darknet are completely non-productive since they originate from worm
propagation, (D)DoS attacks, Internet outages, network misconfiguration,
or other unsolicited activities. Thus, darknet traffic can be applied for track-
ing such security related activities in global scale. A good example is the
work of Dainotti et al. [24] where they monitor the country-wide Internet
outages occurred in Egypt and Lybia in 2011.

Past studies [65][87] on darknet claim that the volume of darknet traf-
fic is not minor and that there is great diversity in this traffic both in terms
of address blocks being monitored as well as over time. They also point
out that based on different root causes darknet traffic broadly comes from
three types of network activities: scanning, backscatter, and misconfigura-
tion. In their descriptions, scanning is largely the result of infected hosts in
the Internet attempting to find other vulnerable targets. Backscatter is most
often the result of (D)DoS attacks, and misconfiguration generally results
from software or hardware errors in network devices. Although this simple
categorization was applied to their datasets, it did not give clear definitions
of each activity with concrete traffic rules and lacked a further refinement
since that traffic classification is just based on TCP flags.

In order to uncover the root causes of darknet traffic, a refined taxon-
omy of darknet traffic is required. In [55] we aim at filling this gap, first,
by proposing a refined taxonomy of darknet traffic on the basis of obser-
vations, and second, validating it on real darknet traces of over six years.
Our taxonomy mainly defines five types of anomalous events with concrete
traffic rules: scanning, one flow, backscatter, IP fragment, and small events
(see Table 2.1). The validation results demonstrate that we detect and label
anomalous events defined by our taxonomy in more than 99% of source IP
addresses, suggesting a extremely low unlabeled source rate. We also obtain
some interesting findings on the evolution of different anomalous events es-
pecially in 2010, thus shedding light on the overall trends of darknet traffic.
We also observed that most source IP addresses are not characterized by one
simple event. Instead more than 99% of sources in our traces participate in
two or three events with simple attack mechanisms. This taxonomy allow
us to automatically characterize threats found in darknet traffic, hence an-
notates corresponding source IP addresses with pertinent labels.
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Table 2.1: A taxonomy of darknet traffic

Event Category Traffic Rule

Port
Scan

TCP
Heavy (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (ScanF lagPktRatio ≥ R%) ∩ (Avg #Pkt per portDst > M)

Light (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (ScanF lagPktRatio ≥ R%) ∩ (Avg #Pkt per portDst ≤M)

UDP
Heavy (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (Avg #Pkt per portDst > M)

Light (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (Avg #Pkt per portDst ≤M)

(3) detectors identify different types of anomalies,

Network
Scan

TCP
Heavy (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (ScanF lagPktRatio ≥ R%) ∩ (Avg #Pkt per ipDst > M)

Light (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (ScanF lagPktRatio ≥ R%) ∩ (Avg #Pkt per ipDst ≤M)

UDP
Heavy (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (Avg #Pkt per ipDst > M)

Light (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (Avg #Pkt per ipDst ≤M)

ICMP
Heavy (#ipSrc == 1) ∩ (#ipDst ≥ N) ∩ ((Type, Code) == (8, 0)) ∩ (Avg #Pkt per ipDst > M)

Light (#ipSrc == 1) ∩ (#ipDst ≥ N) ∩ ((Type, Code) == (8, 0)) ∩ (Avg #Pkt per ipDst ≤M)

One
Flow

TCP (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst == 1) ∩ (#Pkt > N3) ∩ (Protocol == TCP )

UDP (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst == 1) ∩ (#Pkt > N3) ∩ (Protocol == UDP )

Backscatter
TCP (#ipSrc == 1) ∩ (#Pkt ≥ 1) ∩ (TCP Flags ∈ {SA ∪A ∪R ∪RA})

ICMP (#ipSrc == 1) ∩ (#Pkt ≥ 1) ∩ (((Type, Code) == (8, 0)) ∪ (Type == 3))

IP
Fragment (#ipSrc == 1) ∩ (#fragmentPkt ≥ 1)

Small
SYN (#ipSrc == 1) ∩ (#ipDst < N1) ∩ (#portDst < N2) ∩ (#Pkt ≤ N3) ∩ (TCP Flags == S)

Small
UDP (#ipSrc == 1) ∩ (#ipDst < N1) ∩ (#portDst < N2) ∩ (#Pkt ≤ N3) ∩ (Protocol == UDP )

Small
Ping (#ipSrc == 1) ∩ (#ipDst < N1) ∩ (#Pkt ≤ N2) ∩ ((Type, Code) == (8, 0))

Other Other

Remark: Our parameter settings {N = 3, R = 50,M = 3, N1 = 5, N2 = 5, N3 = 15} are empirically decided based on our traces.

2.2 Large-scale DNS traffic analysis

Domain Name System (DNS) plays a crucial role in the operation of net-
work, as it provides bidirectional translation between domain names and
IP addresses. Namely, each internet node has to initiate a name resolution
request in order to access a target host. Thus, analyzing DNS traffic may
help to reveal clients’ intentions. For example, if a client is affected by some
malwares, it would send particular DNS queries bound to malicious activi-
ties. To date, a lot of researches focus on using DNS traffic to detect infected
nodes.

Furthermore, because of the fundamental role of DNS in the Internet,
deceiving DNS infrastructure or DDoS attacks against DNS infrastructure
will bring destructive impacts on network users. It is therefore important to
detect and protect DNS from such kind of attack as well.

In the following, we describe the DNS analysis that have been carried
out in the NECOMA project. We firstly state the different goals of DNS anal-
ysis, we then propose a hadoop-based platform analysis, along with three
different DNS analysis techniques developed by the NECOMA consortium.

2.2.1 Targets of DNS Analysis

1. DDoS Attack/DNS Amplifier
DNS Amplifier Attack is one of the serious threats for today’s Inter-
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Figure 2.8: Attacks of spoofing DNS packets

net. As DNS protocol uses UDP packets, DNS server will respond
the queries without validating source addresses. Also, these attacks
exploit DNS cache servers due to two another facts: 1) there are
more DNS cache servers than DNS authoritative servers, and 2) these
servers reply to recursive queries. Although an ordinary DNS cache
server restricts recursive queries from outer network, there are still a
lot of DNS cache servers which reply to any recursive queries. Thus,
an attacker can choose any domain names from global DNS tree.

Moreover, an attacker sometimes targets the DNS server itself as a
victim of DDoS attack. This kind of attack is a little similar to DNS
amplifier DDoS attack, but it aims at interfering with DNS server’s
work itself. If the attacker wants to spoof a DNS cache server, interfer-
ing with the corresponding authoritative server is an effective way of
increasing the possibility of successful attack, because victims will not
be able to receive ’legitimate’ DNS Answers.

2. DNS Spoofing
DNS spoofing is another security threat for DNS service. As each DNS
resolver caches the results of his queries and responds from that cache
for other queries to anyone who has the same queries. Thus, if an
attacker illegally inserts fake answers into DNS resolver, the users of
the DNS resolver will receive fake answers, that is, as described in [7],
an attacker can forge DNS data and DNS packets and guide the traffic
to phishing sites as shown in Figure. 2.8.

All DNS responses are identified by queried domain name, UDP port
number, and DNS ID. Hence, an attacker could deceive DNS clients by
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sending a forged DNS answer which is disguised with the same do-
main name, UDP port number, and DNS ID. In particular, UDP port
number and DNS ID are 16-bit integer values, thereby making it dif-
ficult to adapt a fake answer to a particular DNS query. In order to
deceive DNS clients, an attacker might send a numerous amount of
DNS answers which have different DNS IDs and port numbers. Al-
ternatively, an attacker might place a web page which contains links
to target domain names. Once a victim opens that page, his browser
does pre-fetch these links, and then an attacker could know the timing
of sending disguised DNS answer to deceive. However, these attack
strategies possibly leave their footprints in DNS traffic log, allowing
DNS traffic analysis to detect some attacks.

3. Botnet’s Command and Control(C&C) Communication
Botnets, networks of compromised PCs (bots) controlled by a bot mas-
ter, are usually the engines behind cyber crimes. They can be used to
steal valuable information from business, send spam emails at a large
scale, scan networks, attempt to exploit PCs, host malicious websites,
and launch various types of cyber attacks. Among those botnets in the
wild, ZeuS has grown into the most popular botnet in 2009 [11, 25],
and it contains a builder that can generate a bot executable and Web
server files for use as the command and control server [29]. The pri-
mary goal of ZeuS is to steal credential information [29, 3] by gaining
full control over a remote computer.

According to CERT.pl [20], there are various mutations of ZeuS after
the ZeuS version 2.0.8.9 source code leaked. The new mutation intro-
duced both a P2P network and a domain generation algorithm (DGA)
to make take down efforts more difficult. Since the earlier version of
ZeuS used some predefined URLs to communicate within botnets, it
was easier to trace the communication. Instead, the new version em-
ployed the P2P network to communicate and to distribute the data.
The DGA dynamically produces a large number of random domain
names and selects a small subset for actual communication and con-
trol use [5]. In addition, ZeuS uses the mechanism as a backup com-
munication channel when the P2P communications are unavailable.

CERT.pl also contributed a technique to detect randomly generated
domains [19]. Figure. 2.9 shows their regular expressions for finding
ZeuS DGA. Each name consists of a string with a length of 32 to 48
characters, and one of TLDs: ru, com, biz, info, net, or org.

[a-z0-9]{32,48}\.(ru|com|biz|info|org|net)

Figure 2.9: DGA detection techniques.
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2.2.2 DNS Traffic Analysis Platform with Hadoop Framework

2.2.2.1 Background

DNS detection methods have different goals and features. One of them aims
to find out domain names which are used in particular botnet implementa-
tions, and yet another method focuses on detecting some malicious attacks
to their network. It means a security operator has to use multiple DNS traf-
fic analysis methods to prevent different type of threats. Moreover, each
network communication requires a DNS query. Hence, the size of analysed
DNS datasets could be huge.

Accordingly, we proposed a platform which could analyze Large-Scale
DNS dataset with variety of detecting methods. Our system helps to develop
and deploy new DNS analyzing algorithms.

2.2.2.2 Design and Implementation of DNS analysis workbench

In our system we use Hadoop framework and HDFS file system to store
numerous DNS traffic data and to process it. This system gathers following
datasets.

• DNS query/response on DNS cache server

• DNS query/response on DNS authoritative server

• DNS traffic on backbone network

All datasets are packet capture file(pcap). Each captured datasets are im-
ported into HDFS periodically.

Since the size of dataset can be huge and some detecting methods do
same preprocessing, we use intermediate output file to reduce computa-
tional resource requirement. Figure 2.10 shows an example of a dataset
flow. First, we use simple TTL filter to pick suspicious DNS packets. A
DNS answer which has extremely short TTL can be a candidate of DNS fast-
fluxing domain name query, because an attacker wants to reflect the change
of their C&C server IP addresses rapidly. On the other hand, A DNS answer
with extremely long TTL was suspected as DNS cache poisoning because an
attacker wants to maximize Time-to-Live of these imitated record cache.

Then, one can use multiple types of detecting methods which focus on
discovering DNS fast-flux in these filtered datasets. These detecting methods
create independent results.

Finally, one can aggregate these results, and rate each record according
to all detecting methods results.
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Figure 2.10: Example of Dataset flow

Regular Expression Based ZeuS DGA Detector

The module of ZeuS DGA detector aims at 1) detecting suspicious DNS
queries in a hosted network at DNS cache resolver, 2) extracting the IP ad-
dresses of the client hosts who attempt to resolve by the suspicious DNS
queries, and 3) identifying the flows that were initiated by the DNS queries
looking up C&C servers.

We used the following two datasets as shown in Table 2.2 for the detec-
tion: 1) pcap trace of DNS queries and responses, and 2) netflow sample
data, which contains DNS traffic as well as a data traffic triggered by DNS
queries.

Table 2.2: Dataset used for ZeuS DGA detection.

format data size (per day) remark
DNS pcap as-is 5GB hadoop-pcap [1]
netflow CSV 1.2GB nfdump

For the detection, the SQL statements described in figure 2.11 are used.
Note that the first query removes queries which contains punycode [48]
since the regular expression used by ZeuS DGA also matches the one of
punycode.

Thanks to the Hive and Presto-db framework that internally splits opti-
mal jobs into MapReduce framework, our DGA detector of ZeuS bot is really
simple.

Result of ZeuS DGA Detector

With the dataset described at Section 2.2.2.2, we analyzed how many hosts
are affected by ZeuS bot in a network by counting the number of queries
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1) select * from dns_pcaps where

regexp_like (dns_question,

’[a-z0-9]{32,48}\.(ru|com|biz|info|org|net)’)

AND NOT regexp_like(dns_question, ’xn--’);

2) select * from dns_response where dns_answer!=’[]’;

3) select * from netflow_ut where sa=’xxx’;

Figure 2.11: SQL statements with regular expression to detect ZeuS DGA
queries and its affected hosts by ZeuS bot.
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Figure 2.12: Number of queries in a day contains ZeuS DGA name, and A
record response.

from the dataset. We collected the pcap data for two months and analyzed
them with Presto-db.

Figure 2.12 represents the number of queries that contain the suspicious
name in the query, and the number of DGA queries response that contain
resolved A records. The IP address in the A record is potentially the IP
address of C&C server. As you can see, there are a number of ZeuS DGA
affected hosts in the network, querying malicious name generated by the
botnet program.

We also observed that current regular expression used by the detector
gave false positive results. Figure 2.13 lists top 3 frequent names. Appar-
ently the query name 3.1415... is the false positive entry, which has a
normal domain name used by hosted server. We plan to create a white list
to avoid such false positives.
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f528764d624db129b32c21fbca0cb8d6.com.

3.141592653589793238462643383279502884197169399375105820974944592.com.

www.paypal.com.verify.securearea.(snip).com.

Figure 2.13: Top 3 frequent detected DNS queries.

By using the IP address list obtained by this query, we can identify traffic
flows from our netflow dataset communicating with the IP addresses, which
might be C&C servers.

2.2.2.3 Regular Expression Based DNS Reflection Attack Detector

This module of DNS reflection attack detector aims at detecting DNS reflec-
tion attack which is recently a popular DDoS attack. We measure daily flow
volume, which includes the communications with DNS open resolver hosts.

We used the following three datasets (Table 2.3) for the detection: 1)
sFlow traffic data collected from internal routers, 2) the list of DNS open
resovler host in whole IPv4 address space which is gathered by Takano [79],
and 3) the target host list of a campaign.

Table 2.3: Dataset used for DNS Reflection Attack detection.

format data size remark
sFlow CSV 1GB (per day) -
DNS open resolver list CSV 416M -
Target host list CSV 22 domains -

For the detection, we used the following SQL statement (figure 2.14).
In this case, we fortunately acquired target host list of the DDoS campaign.
This query extracts flows from sFlow datasets which have target host IP
addresses as a source IP address and the destination IP address listed in DNS
open resolver list. We can easily observe changing the number of suspicious
flow in daily.

select * from {sflow} join dns_openresolver_list

on ({sflow}.dt=’{date}’) and ({sflow}.srcIP

= dns_openresolver_list.id) and {targetIPaddresses};

Figure 2.14: SQL statement with regular expression and join to detect DNS
reflection attack.
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Figure 2.15: Number of flows in a day.

Result of Regular Expression Based DNS Reflection Attack Detector

We analyzed one month sFlow datasets with the attack detector. As a result,
we did not observe any trend of the attack campaign. In fact, the campaign
was not observed in any other sources. Figure 2.15 shows daily flow volume
in an sFlow dataset which is collected on an academic research backbone
(sampling ratio is 8192). The graph shows the number of the flows catego-
rized by regional Internet registry. There is such kind of flow in daily traffic.
Unfortunately, there are some false positive results in which we label some
legitimate DNS queries as malicious. For example, a flow which is going to
public open DNS such as Google Public DNS (8.8.8.8) is counted as open
resolver communication. However, the flow might be legitimate rather than
malicious. As our detector observes only flow volume, it can adapt to de-
tect large scale DDoS campaign based on DNS reflection. In such kind of
campaign, the number of open resolver’s flow could be increased.

2.2.3 DGA-based botnet detection system

In recent years, botmasters have developed domain generation algorithm
(DGA). Attackers generate pseudo-random domains names for C&C server.
Each bot periodically executes DGA by receiving a random seed (e.g., the
current time) and computes a list of candidate C&C domain names. Finally,
each bot sends DNS queries for candidate domain names and gets the IP
address of the C&C server. Examples of malware that execute such DGAs
are Srizbi[86], Conficker-A/B[71], Conficker-C[72] and Gameover Zeus[4].
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In order to detect DGA-based botnets, Antonakakis et al.[6] focus on
Non-Existent Domain (NXDomain) responses. Most of the DGA domains
that a bot queries would result in NXDomain responses.

We also focus on NXDomain. Our approach is divided into two steps:
Extraction and Classification. (1) We receive non-existent domain names
that result in NXDOMAIN responses from DNS cache servers and DNS auth
server, then we extract suspicious domains based on DGA temporal locality.
(2) We apply support vector machine (SVM) classifiers to suspicious do-
mains and classify malicious or legitimate domains. Then, we detect hosts
that queried to malicious domains as infected hosts.

2.2.3.1 Dataset

We collected DNS traffic captured at recursive DNS resolvers in the Uni-
versity of Tokyo We have observed the period from December 1, 2013 to
October 31, 2014. On average per each day, the total number of all DNS
queries is 18.2 million and the number of distinct host is 45,000. Then, we
also collected DNS traffic captured at a widely queried an upper authorita-
tive nameserver during the same period.

As the ground truth, we performed malware dynamic analysis. To ob-
tain a sample set of malicious domains we executed malware samples in
a VM-based malware automated analysis system which only allows legiti-
mate traffic. We executed Zeus Gameover samples and obtained collected
3,000 domains per a day. We also used well-known malicious domains of
Conficker[23]. In this data, 18.3 million malicious domains are included
together Conficker A / B / C. In addition, by using the top 100,000 popu-
lar domains from alexa.com as legitimate domains and applying the prefix
www. to these, we used the total 200,000 domain.

2.2.3.2 Approach

We extract suspicious domains based on the temporal locality of DGA. There
is the temporal locality that domain names which have been generated by
DGA are used for only a short time. Hosts that are infected with the same
DGA-based bot are likely to query the same non-existent domain names.
When many bots generate the same non-existent domain at the same time,
the requests to the non-existent domain increase rapidly within a certain
period of time. On the other hand, non-existent domains which are queried
by user (e.g., typo) are unlikely to be queried at the same time. Other
non-existent domains which are queried by anti-virus software for matching
blacklist are queried for a long time. Figure 2.16 shows that the number
of source IP address that queried to well-known malicious domain gener-
ated by Conficker-C and legitimate domain generated by anti-virus software.
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Figure 2.16: The number of hosts which queried each NXDomain during a
week

Therefore, we consider non-existent domains which are queried by many
hosts in a given period are likely to be DGA domains.

However, there is a bias of non-existent domains for each network. For
example, if the web page which is published by the University of Tokyo put
the wrong URL, the requests to that non-existent domain increase rapidly in
the network of the University of Tokyo . Consequently, there is a lot of noise
in the analysis of recursive DNS resolvers. Although we could eliminate the
noise in the analysis of an upper authoritative server, we couldn’t distin-
guish between existent domains and non-existent domains. Therefore, we
combined recursive DNS resolvers and the upper authoritative DNS server.
We extract non-existent domains in recursive DNS resolvers and compute
source IP addresses which requested to that non-existent domains in an up-
per authoritative DNS server. In this way, we extract non-existent domains
which were queried by over n hosts within dmax days in dspan days. These
non-existent domains are suspicious. We empirically set n = 10, dmax = 2
and dspan = 7 in preliminary experiments.

2.2.3.3 Classification

After extracting suspicious non-existent domain names, we apply classifica-
tion based on the character structure. For each domain, We compute the
following structural features.

• The frequency distribution of n-grams(n=2)
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Table 2.4: The number of host.

Dynamic analysis DNS resolvers Total
Hosts 24 370,049 370,973

• The entropy of the character distribution(2LD,3LD)

• Domain length(d, 2LD,3LD)

• Domain level

• TLD type

We use support vector machine (SVM) as a classifier. Given a set of
training data which belong to malicious or legitimate domain from grunt
truth, SVM builds a model that assigns new domains into malicious or legit-
imate. We apply SVM to suspicious domains obtained from the extraction
step. Then, we detect hosts that queried to malicious domains which are
assigned as malicious domains by SVM as infected hosts.

2.2.3.4 Results

We evaluated our method against DNS traffic from recursive DNS resolvers
and one of widely queried high-level nameserver from October 24, 2014 to
October 31, 2014. To evaluate, we mixed domains obtained from recursive
DNS resolvers and dynamic analysis. The average number of distinct host
per day is 370,049 in recursive DNS resolvers and the number of VM which
we ran for dynamic analysis is 24, then the total number of host is 370,973,
as shown in Table 2.4 We evaluated how well our method could detect these
24 infected hosts in 370,973 hosts.

Our method detected 30 hosts as infected hosts in all hosts. These 30
hosts included 24 infected hosts. Therefore, our method is proved to detect
correctly.

2.2.4 Classification of DNS Erroneous Queries

The domain name system (DNS) is one of the most important service in the
Internet, it provides translation between domain names and IP addresses.
However, it is reported that the DNS has also been abused for non-legitimate
purposes such as spam, botnet controls and distributed denial of service
(DDoS) attacks. Therefore, it is necessary to understand abnormal DNS
behaviors for preventing malicious activities.

To date, many studies have been devoted to DNS measurement and
analysis[84, 18, 39, 45, 64, 5, 90, 35, 41, 70, 15, 37, 10, 44]. DNS er-
rors are caused by un-resolvable DNS queries from local resolvers. We still
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have less than enough knowledge about the causes of the DNS errors for
reducing them. In addition, a huge number of DNS errors unnecessarily
consume network resources as well as those of DNS servers.

Table 2.5: Classification rules for NX Domain errors

No Rule Example
1 Used by anti-virus software waseda.jp.uri.jp1.sophosxl.com
2 Used by anti-spam RBL 1.0.0.0.zen.spamhaus.org
3 Unknown TLD example.TEst
4 Random words qebwprbpyy.ac.jp
5 Add “dlv.isc.org” example.com.dlv.isc.org
6 Configuration words local, wpad
7 Local name YUTA-PC
8 (IP Address)+(TLD) or 192.168.0.11.ac.jp

repetition of TLD www.waseda.jp.ac.jp
9 RFC 1034 violation (10.3.1.3).go.jp, ***.com

Thus, we analyze the DNS traffic using passive DNS measurement at an
external connection link of an academic backbone network in Japan [47].
In particular, we focus on DNS errors, such as ServFail, Refused, and NX
Domain, sent from authoritative nameservers in external networks to local
resolvers in the academic network. We report on a number of abnormal
phenomena likely caused by malicious and abnormal systems. First, we find
that most of ServFail and Refused errors are replies to queries from a small
number of resolvers. We also discuss a number of problematic authorita-
tive nameservers that always send back these errors. Second, we propose
heuristic classification rules based on observed NX domain names (see Table
2.5). These rules classify NX Domain errors into nine groups and allow us
to identify 88.7% of unique domain names observed in our dataset. As a
result, we confirm that NX Domain errors are mostly caused by specific anti-
virus client software and anti-spam systems that generate many queries for
checking if domains are registered on a black-list for legitimate purposes,
as well as mis-configurations of servers and end-user machines that query
wrong domain names. We also find a set of malicious domains used in spam
messages by applying the classification rules to legitimate answer domains.
Randomly generated domain names also account for a large fraction of the
unique domain names (17.3%) observed in our dataset and allow us to iden-
tify hosts infected by malware using domain generation algorithm (DGA).

2.2.5 DNS anomaly detection using PCA

DDoS attacks and especially reflection attacks, that misuse open services
on the Internet to indirectly overwhelm victims, have long demonstrated
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their nefarious impact on the Internet, at a large scale. Nonetheless, re-
cent research work has indicated that, for example, open DNS resolvers,
i.e., which would serve any unauthenticated user, still amount to 29 mil-
lions [51]. Therefore, it remains easy to abuse such resolvers to generate
a volumetric attack against an unsuspecting victim just by sending many
spoofed queries. Our work focuses on detecting anomalies affecting DNS
traffic received by DNS resolvers, i.e., DNS queries. Using DNS traffic avail-
able within the NECOMA consortium, we have carried out several analyses
to express patterns among DNS queries. While we are mostly using features
readily available within the DNS traffic, we have proposed to add an entropy
score computed from the distribution of queries among clients identified by
their IP address. This additional feature allows to track anomalous events
such as particularly preponderous clients, which may indicate spoofing.

A principal component analysis is performed against a 7-variable vector
including DNS query features and the proposed entropy score which has
given convincing results for DNS servers of the same type (authoritative,
cache). Up to 4 components allow to explain most of the variance of the
captured traffic. By using k-means clustering on the PCA-transformed traffic,
we were able to group different events, with anomalous ones being the most
sparse and distant from the principal component axes. In order to automate
and generalize the process for a greater number of clusters, we have used
an outlier detection process based on the inter-cluster distance [21].

2.3 End-point threat data analysis

In recent years the commoditization of software marketplaces, applications,
addons, extensions and plugins, widely available for anyone, entices and fa-
cilitates collection of private information or the propagation of malicious
code. Furthermore, new generations of malicious code are increasingly
stealthy, powerful and pervasive, thus, there is a clear need for better un-
derstanding of threats and resilient-by- design information systems.

Due to the increase of cyber attacks targeting users, the end user protec-
tion is included in the NECOMA research coverage. It is expected that the
information from different layers will give new aspects for identifying phish-
ing attacks. Additionally, we expect that the investigation of the reasons for
interpreting websites as trustworthy and executing untrusted programs will
help elucidating malicious activities.

The prototypes and ideas described below are part of research activities
that aim at designing and developing a framework that will be able to accu-
rately detect various attacks and malicious web based activities with the aim
at identifying threats targeted at endpoint interfaces such as web browsers.
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2.3.1 Machine Learning-based Phishing Detection

To prevent a user from browsing phishing sites, there are two distinct ap-
proaches. One is URL filtering. It detects phishing sites by comparing the
URL of a site a user visits with a URL blacklist composed of the URLs of
phishing sites. However, it is difficult to build a perfect blacklist due to the
rapid increase of phishing sites.

The other approach is a heuristic-based solution. A heuristic is an algo-
rithm to distinguish phishing sites from others based on users’ experience,
that is, a heuristic checks if a site seems to be a phishing site. A heuristic-
based solution employs several heuristics and converts results from each
heuristic into a vector. Based on the vector, the heuristic-based solution
calculates the likelihood of a site being a phishing site and compares the
likelihood with the defined discrimination threshold. Different from URL
filtering, a heuristic-based solution has a possibility to identify new phishing
sites.

In the analysis, we employed following seven heuristics derived from
earlier researches [91, 88].

• Age of Domain
Checking if the domain was registered more than 12 months ago. If
the site has been registered more than 12 months, the heuristic deems
it a legitimate site, and otherwise it deems it a phishing site.

• Suspicious URL
Checking if a URL of the site contains an “at” symbol (@) or a “dash”
(-) in the domain name. If so, the heuristics deems it a phishing
site because phishing attackers are likely to use these symbols in the
domain name of a phishing site. When the at ”@” symbol is used
in a URL, all text before the @ symbol is ignored and the browser
references only the information following the @ symbol as a host-
name. Phishing attackers likely abuse this URL scheme: For example,
if http://paypal.com@phishing.com is used, web browsers would be
directed to the phishing.com. Even if it seemed like paypal.com, web
browsers would ignore this.

• Suspicious Links
Similar to the Suspicious URL heuristic, this one checks if a link on the
page contains an “at” symbol or a dash.

• IP Address
Checking if the domain name of the site is an IP Address. Although
legitimate sites rarely link to pages by an IP address, phishers often
attract victims to phishing sites by IP address links.
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Table 2.6: Definition of True Positive, True Negative, False Positive and False
Negative

Label as Phishing Label as Legitimate
Actual Phishing True Positive (TP) False Negative (FN)

Actual Legitimate False Positive (FP) True Negative (TN)

• Dots in URL
Checking if the URL of the site contains five or more dots. Accord-
ing to [31], dots can be abused for attackers to construct legitimate-
looking URLs. One technique is to have a sub domain. Another is
to use a redirection script, which to the user may appear like a site
hosted at google.com, but in reality will redirect the browser to phish-
ing.com. In both of these examples, either by the inclusion of a URL
into an open redirect script or by the use of a number of sub domains,
there are a large number of dots in the URL.

• Forms
Checking if the page contains any web input forms. In the case of
CANTINA, it scans the HTML for <input> tags that accept text and are
accompanied by labels such as “credit card” and “password.” If so, the
heuristic deems it a phishing site.

• TF-IDF-Final
This heuristic checks if the site is phishing by employing TF-IDF-Final,
which is an extension of the Robust Hyperlinks algorithm [67]. When
the heuristic attempts to identify phishing sites, it feeds the mixture
word lexical signatures and a domain name of the current web site
into Google. If the domain name matches the domain name of the top
30 search results, the web site is labeled legitimate.

We used precision, recall and accuracy as performance metrics for clas-
sification. Table 2.6 shows factors for calculating each metric. The precision
was calculated by TP/(TP + FP ), the recall was TP/(TP + FN). and the
accuracy was (TP + TN)/(TP + TN + FP + FN).

Our analysis used roughly 30,000 of phishing sites and the same number
of legitimate ones, and employed RandomForest as an classifier of phishing
and not. We observed that the precision was 86.06% and the recall was
75.81%, and the accuracy was 81.77%.

2.3.2 Users’ behaviour analysis

According to our previous researches [61], experts in identifying phishing
tended to assess the credibility of the websites by URL of the websites and
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(a) Novice (b) Expert

Figure 2.17: Eye-tracking in phishing website

security information appeared at the browser. Conversely, novices tended to
ignore these information assess the credibility by web content. Web content
in the phishing sites usually perfect copy of the legitimate ones, and hence,
novices falls into phishing.

We herein decided to employ eye movements-based observations by fol-
lowing reasons. At first, our motivation is to check if the end users inves-
tigated the browser’s address bar; eye-tracking is a straightforward way for
observing users’ behavior. It should be noted that modern web browsers
do show the website’s URL and security information in the address bar.
The second is that monitoring eye movement will not significantly penal-
ize users’ convenience. Other tools, such as Brain activity, heart measure,
and blood pressure are feasible due to the sensitivity to workload changes,
but they tend to require much obtrusiveness for people. Contrastively, Facial
expression and Gesture recognition were often affected by Fear of Negative
Evaluation [83].

In order to assess if gazing at the address bar is beneficial, we performed
a participant-based experiment to monitor an end-user’s eye activity. The
description of the experiments can be shown in Deliberable D1.3: Endpoint-
Layer Threat Datasets.

In this experiment, we recruited 23 participants to observe their eye
movement. The volunteers were mainly males in their twenties. It should
be noted that we could not collect the information about neither affiliation
nor nationality. With their consent, their eye movements were recorded by
our prepared eye-tracking device, Tobii TX300 1. It required a calibration
procedure for each participant.

Fig. 2.17 and 2.18 show typical eye-movement records on both phish-
ing and legitimate website, for a novice and an expert respectively. Circles

1http://www.tobii.com
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(a) Novice (b) Expert

Figure 2.18: Eye-tracking in legitimate website
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Figure 2.19: The average false positive, false negative and error rate for
users that looked (blue) and did not look (orange) at the address bar

denote fixations, and the numbers in the circles denote the order of the
fixation. In the phishing case, the novice looked at the web content but
ignored the browser’s address bar while assessing credibility, as shown in
Fig. 2.17a. Since the text and visual in phishing sites are quite similar to the
ones in legitimate sites, he failed to label the phishing site correctly. In the
legitimate case, he also only paid attention to the web content as shown in
Fig. 2.18a. In contrast, an expert tends to evaluate the site’s URL and/or the
browser’s SSL indicator rather than the contents of the web page to judge
the credibility of the sites, as shown in Fig. 2.17b and 2.18b.

We then analyzed the detection accuracy of participants who looked at
the address bar and those who did not look, respectively. The results were
shown in Fig. 2.19, where he blue bar denotes the average rates for the
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participants looked at the address bar of the browser, and the orange bar
denotes that for the participants did not look at the bar.

Out of the 331 times the bar was gazed, 89 (26.9%) misjudgments were
observed. In the phishing websites case, the participants looked at the bar
200 times in total, which occurred 61 (30.5%) false negatives, i.e., labeling
phishing as legitimate. In the legitimate websites case, they looked at the
bar 131 times in total, which occurred 28 (21.4%) false positives, i.e., la-
beling legitimate as phishing. In contrast, the average error rate was 41.1%
(53 out of 129), the false negative rate was 56.6% (43 out of 76), and
the false positive rate was 18.9% (10 out of 53), when participants would
ignore the address bar. The average error rate and false negative rate in-
deed decreased when the address bar was checked, although experimental
errors might have occurred due to some possible offsets caused by the eye-
tracking calibration procedure. The increase of the false positive rate seems
to be marginal. We therefore concluded that checking the browser’s address
bar is beneficial to end users in making them aware of phishing.

2.3.3 Spam campaign analysis

Spam is a key medium for scams, phishing, illegal advertising, and malware
spreading. To send numerous emails in a stealthy manner, spammers take
advantage of large networks of compromised hosts also called botnets. As
each infected host sends a small number of spam, detecting all members of
a botnet is particularly hard.

An effective approach to infer spamming botnets is to identify all spam
emails from a same campaign. Thereby, the challenge is shifted to the identi-
fication of spams from the same campaign [66]. This task is easier because
all spams in a campaign share the same goal, hence, they have common
features that permit to distinguish distinct spam campaigns.

We propose a new methodology based on fuzzy hashing to identify spam
campaigns [22]. Fuzzy hashing is an effective technique to measure the
similarity of two sequences of characters. We implement fuzzy hashing to
compare the content of spams and compute a similarity measure. Spam
emails from one campaign have a high similarity score among each other
and a low score with other emails. Within a campaign spam emails also
share other features such as URL or email address. By combining fuzzy hash
results and theses common features, we accurately cluster spam emails into
campaigns.

The analyzed dataset consists of about 550K spams collected by a few
mail accounts over three years. An important contribution of this work is
a detailed analysis of long-duration botnet spam campaigns. Figure 2.20
depicts the time evolution of the top 35 spam campaigns that sent the most
messages in our dataset, and Table 2.7 shows the main features of the top
15 campaigns. The major findings of our study include:
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Table 2.7: Detailed characteristics of the top 15 campaigns

Camp. No # Spam # IPs # Subnets # MD5 Period(days) # Titles # URLs # Emails

1 8630 8281 7959 7570 467 462 1337 0
2 5640 5107 4683 5304 166 374 5074 0
3 3760 3756 3753 6 80 113 5 0
4 3419 3419 3418 8 91 673 6 0
5 2454 2454 2454 6 278 71 6 0
6 2222 2142 2115 4444 69 169 2261 122
7 1909 1909 1909 1909 186 92 3 0
8 1715 1714 1714 4 152 89 2 0
9 1706 1705 1704 1706 78 191 3 0
10 1276 1276 1276 2 49 298 3 0
11 1031 1030 1030 1031 25 34 5 0
12 917 864 856 829 164 864 1399 10
13 850 225 213 1550 56 483 0 198
14 838 838 838 1 16 432 2 0
15 828 828 827 828 91 37 2 0

Figure 2.20: Time evolution of top 35 spam campaigns
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• Many spam campaigns are constantly appearing, and last for months.

• Different spam campaigns may be initiated from the same botnet.

• Most spam campaigns can be classified into two types; some cam-
paigns are easily detectable as the corresponding spam emails contain
common identifiers (e.g. URL), while more sophisticated campaigns
generate different contents to avoid simple spam detectors.

Considering that more sophisticated spam campaign appears in future,
we believe that tracking spam campaign behavior is an important task for
network security. Furthermore, the automated identification of the common
identifiers of a spam campaign (e.g. URLs or email addresses), permits to
systematically report suspicious Internet resources.

2.3.4 High Precision Phishing Detection

Because phishing attacks rely on impersonating third party services, it is
nearly impossible to reach 100% detection accuracy since the malicious web
pages resemble legitimate services to a great extent. Traditional classifiers
always have up to a few percent of uncertainty leaving the possibility of
misclassifying a website. Thus, one of the studies conducted within the
NECOMA project aimed at investigating techniques that would not be bur-
dened with uncertainty.

2.3.4.1 Initial studies

Because the first kind of information encountered, at the endpoint side,
while dealing with phishing attacks is the actual URL or hostname leading to
the malicious service, the investigation started by analysing hostnames com-
ing from two publicly available datasets: Alexa serving as legitimate website
list (dataset obtained on 26.03.2014) and PhishTank serving as phishing
website list (dataset obtained on 16.04.2014). Alexa provides a free CSV
download of their top 1,000,000 sites world wide, which is updated daily.
PhishTank provides a downloadable database, containing all currently on-
line phishing websites (updated hourly). The aim of the study was to find
features that would clearly distinguish the two datasets. An example of such
features is shown in Figure 2.21.

Figure 2.21 represents a datasets that consists of 105 269 samples, 99
601 of those being negative samples. The plot shows two features plotted
against each other, the number of dots in the host name and the length
of the last segment of the host name (e.g. in google.com the length of the
last segment is 3) . Additionally, the two classes are plotted with different
markers, the green filled circles mark legitimate host names where the black
outline circles mark phishing websites.
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Figure 2.21: Number of Dots vs. Last Host Name Segment Length

The plot clearly shows a tendency in the host names structure where
the values of the features for the legitimate websites do not exceed certain
values allowing a small portion of the phishing host names to be easily ’cut
off’.

This observation allowed us to design a simple machine learning based
classifier using as input four most prominent host names features in different
combinations. Table 2.8 represents the initial experiment results, where the
numbers in the Features column represent respectively: 1 - number of dots
in the host names, 2 - last segment length, 3 - second last segment length, 4
- third last segment length.

Clearly, increasing the number of features used for classification increases
the recall rate, but it also decreases the precision in cases where it reached
100%. Another fact is that, the recall rate reaches up to 10%, and assum-
ing the worst case scenario, where the number of phishing websites is equal
to the number of legitimate websites, if a host name gets classified as a le-
gitimate one, there is around a 55% chance that it actually is legitimate.
However this number is an abstract and a very hard to measure assumption
since the number of active phishing websites changes very rapidly and is
significantly lower then the number of legitimate services.

2.3.4.2 Design Principles

Although the results of the initial investigation were promising, the dataset
of phishing websites changes so fast that the results were outdated after a
couple of days. This is clearly illustrated by the statistics Phishtaks dash-
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Table 2.8: True positives (TP), false positives (FP), false negatives (FN),
precision and recall for particular features combinations

Features TP FP FN Precision Recall
One Feature

1 364 0 5304 1 0.0642
2 11 0 5657 1 0.0019
3 3 1 5665 0.75 0.0005
4 58 2 5610 0.9666 0.0102

Two Features
1, 2 387 0 5281 1 0.0682
1, 3 528 6 5140 0.9887 0.0931
1, 4 478 23 5190 0.9540 0.0843
2, 3 21 2 5647 0.9130 0.0037
2, 4 105 2 5563 0.9813 0.0185
3, 4 380 56 5288 0.8715 0.0670

Three Features
1, 2, 3 551 5 5117 0.991 0.0972
1, 2, 4 513 23 5155 0.957 0.0905
1, 3, 4 773 164 4895 0.8249 0.1363
2, 3, 4 466 108 5202 0.8118 0.0822

Four Features
1, 2, 3, 4 814 182 4854 0.8172 0.1436

board2 where the daily volume of submitted suspicious websites reaches
approximately 2 000 entries, reaching 3 000 in highest peaks. Out of all
submitted entries around 50% are identified and confirmed phishing web
sites.

Verification time of a phishing website ranges from almost 10 hours in
January 2014 to over 61 hours in April 2014, as the assessment is performed
manually by the PhishTank community. But even this short life span (the
websites are blacklisted shortly after verification) allows phishing websites
to do significant damage.

The aforementioned facts can be perceived as requirements that would
have to be meet in order to facilitate and enhance phishing website detec-
tion. To generalize, the requirements can be enumerated as follows:

High performance
Because of the high number of phishing websites occurring daily, the
prototype has to be able to cope with the ’worst case scenario’. The
’worst case scenario’ would be described by the threshold statistics,
that is to analyse 3 000 web sites (highest peaks) in less then 10 hours.

2PhishTank statistics - http://www.phishtank.com/stats.php
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Full automation
The prototype has to function independently and autonomously. It
has to be able to alone gather all the necessary data to make a website
classification, furthermore, using that data to make an assessment of
the website.

High precision
The prototype has to provide a high precision assessment, meaning
that it will not classify legitimate web sites as phishing, providing at
the same time highly accurate results.

2.3.4.3 Prototype Design

Taking into account previously specified requirements and initial studies we
propose the following prototype design based on real-time machine earning
algorithms, along with initial implementation description.

Figure 2.22 illustrates the initial architecture design along with the data
flow. Since distributed systems tend to be much more effective and efficient
in performing complex tasks then other systems, the prototype consists of
four independent modules and an internal database:

Data collection module
This module is responsible for automated data gathering. It can be
plugged into an external sources, download the datasets and extract
the necessary information placing it in the database. The module dis-
tinguishes between phishing and non-phishing datasets, what is later
used by the analysis module for learning.

Currently the prototype is able to query PhishTank and Alexa, but both
datasets require ad-hoc processing because of various formatting of
the information provided.

Feature extraction module
This module reads from the database the data initially provided by the
data collection module, then, it extracts and stores in the database fea-
tures that will be later used to train the machine learning algorithms.

Currently the module is divided into two sub-modules, each extract-
ing a different features group: hostname analysis module and HTML
analysis module. Both work independently and do not interact with
each other.

The hostname analysis module does not need any interaction with
the outside network and can extract the features based solely on the
hostname of the URL taken from PhishTank and Alexa.

Features extracted by this module are based on the initial studies de-
scribed before in the document. Negative (currently Alexa) entry with
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Figure 2.22: Prototypes architecture

the highest number of dots in the hostname is considered the negative
threshold. The hostname segments are then extracted based on that.

The HTML analysis module is a web crawler able to query and analyse
web pages, and extract relevant features. Currently it is looking for
certain keywords as well as things such as the presence of the HTTPS
protocol.

All extracted features are placed in the database as parameters of the
associated URL.

Analysis module
The analysis module reads from the database the features extracted
by the feature extraction module and uses those as training datasets to
train the classification algorithms.

The classification algorithms are real-time machine learning based al-
gorithms that can be fed a constant stream of data and adjust the
decision boundaries accordingly. This gives the algorithm very high
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flexibility and the ability to adjust to the changing environment with-
out the necessity to store the training dataset once trained.

The analysis module is currently divided the same way the feature ex-
traction module is divided: one classification algorithm per feature
group.

The parameters obtained during the training are kept in the database
for further use.

External interface
In order to make the prototype useful, an external interface is provided
for external clients to submit suspicious websites.

The module is able to extract features on its own and implements the
classification function of the classification algorithms.

Once a URL is submitted, it extracts the different features groups, and
based on the latest trained parameters, classifies the web site. It pro-
vides the classification and the estimated accuracy of that classification

The prototype is already partially implemented and initial results show,
that, considering only the hostname features group, for 1 000 new URLs
submitted to the external interface, the prototype was able to ’cut off’ with
100% precision 7% of the malicious web sites in less than 3 seconds.

Thus, we consider the results very promising and foresee, that in combi-
nations with the classifiers mentioned in the other chapters we could main-
tain the precision at the 100% level while increasing the malicious services
detection rate.

2.3.5 Classification of SSL Servers

In today’s Internet, the Secure Socket Layer (SSL) and Transport Layer Se-
curity (TLS) are the most widely deployed security protocols used when
a client and a server desire to securely exchange data over the Internet.
SSL/TLS is used in several ways. Online businesses (e.g., online retails)
use SSL/TLS to build customers’ confidence that their sensitive information
will not be compromised during online transactions. Enterprise mail servers
utilize SSL/TLS to encrypt messages being transmitted over the Internet or
within Intranets.

Unfortunately, as reported by Netcraft in 2012, SSL/TLS can also be used
spitefully [63]. Netcraft found a significant number of phishing websites
using valid SSL certificates issued by trusted Certificate Authorities (CA),
such as Symantec and Comodo. These websites intended to employ HTTPS
to convince victims to trust them. Even though they account for a small
fraction of phishing attacks, they are eroding trust in SSL/TLS.
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Table 2.9: Vulnerability score ranges with security levels to assess an SSL
server

Total vulnerability score (Tscore) range Security level
Tscore < 0.5 Best
0.5 ≤ Tscore < 1 Good
1 ≤ Tscore < 1.5 Average
1.5 ≤ Tscore < 2 Bad
Tscore ≥ 2 Worst

To establish an encrypted communication using SSL/TLS, a client and
a server perform a handshake. The client requests the SSL certificate from
the server. Upon receiving the server’s certificate, the client performs certifi-
cate verification as follows. It uses the corresponding preloaded CA’s public
key to verify the authenticity of the digital signature in the server’s certifi-
cate. It also validates the certificate by checking the certificate’s issuance
and expiration dates. Finally, it generally verifies that the service for which
the certificate has been issued matches the service to which it wishes to
connect.

The most popular SSL/TLS clients and servers are web browsers and
servers. Typically, when encountering a server’s certificate issued by an un-
trusted CA, an expired certificate, or a mismatched domain, browsers issue
a security warning to users. Browsers also provide more security assistance
to their users. For example, by clicking on a padlock icon in the browser
window, users can see information related to the website’s certificate, the
certificate’s issuer, and the period of validity of the certificate. Furthermore,
browsers show a green address bar when a user is connecting to a website
using an Extended Validation (EV) certificate. The green bar implies that
such a connection is more secure, because CAs use an audited and rigorous
entity authentication to issue an EV certificate [81]. However, users must
eventually assume the responsibility of trusting an HTTPS website.

We propose three methods for classifying SSL/TLS servers in terms of se-
curity: (1) the certificate information-based method relies on heuristics us-
ing the identity information of certificates (also called Distinguished Names)
and the issuing CA to determine the security level of a server. (2) The proto-
col version and encryption algorithm-based method identify known security
flaws by looking at the protocol version and the encryption algorithm cho-
sen by a server. (3) We also devise a technique to combine results from
these two methods and compute a security vulnerability score, Tscore, that
assesses the reliability of a SSL/TLS server.

Using the proposed methods, we classify a large dataset of real-world
SSL/TLS servers that were active from July 2010 to May 2011. In our ex-
periments the vulnerability score, Tscore, ranges between 0 and 3.5. Each
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Table 2.10: Classification results based on security assessment score

Survey #Good #Average #Bad #Worst
name servers servers servers servers
Jul-2010 4,462,945 472,745 4,494,127 253,371

(46%) (5%) (46%) (3%)
Aug-2010 4,933,374 521,230 5,307,106 283,523

(42%) (5%) (48%) (3%)
Dec-2010 3,720,084 308,675 3,482,081 194,696

(48%) (4%) (45%) (3%)
Apr-2011 2,764,267 258,491 4,027,915 84,200

(39%) (4%) (56%) (1%)
May-2011 1,526,521 212,406 2,053,710 3,800

(40%) (6%) (54%) (<0.5%)

server in the dataset is assigned a security level according to its Tscore and
the rules of Table 2.9. The results are shown in Table 2.10, and reveal that
no server could attain the “Best” security level in this survey. About 43% of
the servers are “Good” servers and about 50% of the servers are “Bad”. Less
than 7% of the servers have either average or worst security levels. These
results (Table 2.10) feature a bimodal distribution where modes represent
both good and bad levels of security.

The three proposed methods can be implemented as a supplementary
client-side security module (e.g., a web browser plug-in) to aid users in
assessing the risk of their SSL/TLS communications. For example, a web
browser integrating our classifier could raise a security alarm when the
user’s encrypted data may easily be compromised due to a weak cipher,
or when the user connects to a malicious server. Therefore, we propose 45
features, deemed relevant to security assessment, for future SSL/TLS data
collection and analysis.

2.3.6 Classification and Detection of Command and Control Con-
nections through Malware-generated URL Clustering

We propose a behavioral classification system that leverages common HTTP
features in malware C&C activity. Current network-based classification sys-
tems can still be misled by malware using multiple obfuscation techniques.
They monitor all traffic triggered by malware, including C&C connections
and other activities such as noise, attacks and connectivity checks, which
do not reliably characterize a given malware family. While it is difficult
to identify C&C connections during analysis of a single malware, the cor-
relation and clustering of HTTP patterns across a large malware dataset
reveals valuable similarities among samples of the same malware families.
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Therefore, we process the HTTP traffic triggered by malware executed in a
dynamic analysis environment, and we identify URL patterns that charac-
terize its main C&C applications. We propose a two-stage classification of
malware HTTP traffic. First, we build URL clusters based on the structure
and statistical features of URLs. These clusters characterize malware activi-
ties such as spam, adclicks, and connectivity checks. Then we implement a
fine-grained, noise-agnostic process that discards noise and builds clusters
of malware C&C traffic based on patterns that are shared among samples of
the same malware family. To the best of our knowledge, our system is the
first to propose an automated network-based solution that isolates noise and
builds detection signatures based only on malware C&C connections. Our
experiments prove that it reliably characterizes and detects the C&C activity
triggered by malware, with a very low false positive rate.

2.3.7 Identification of C&C communication in sandbox data

Execution of malware samples in dynamic analysis environment (sandbox)
can provide us with valuable information. Here we propose a new classifi-
cation system that aims at recognition of previously unknown C&C servers.
Our system leverages a fact that similar malware samples show similar net-
work behavior because they share code.

Modern botnets use many evasive techniques such as obfuscation and/or
encryption of C&C protocols to avoid payload inspection-based detection.
Malware samples also connect not only to their C&C servers but to legit-
imate servers as well. To disguise their C&C connection, botnets perform
various network activities such as connectivity checks, time synchronization
or noise generation. Therefore, it is difficult to recognize C&C connection
based on single malware sample execution, especially encrypted one. Our
system leverages the hypothesis that similar malware samples (e.g. belong-
ing to the same botnet family) not only use similar C&C protocols but also
show similarities in other network activities. Based on that assumption and
using network traffic features such as transport protocol and sequence of
payload lengths, our system builds clusters of samples that behave in the
same manner. For samples belonging to one cluster there should be the
same sequence of network connections both to legitimate and C&C servers.
Using an initial set of both known C&C servers (blacklist) and legitimate
ones (whitelist) we are able to identify the sequence of server classes for
each cluster and build a network behavior profile. Comparing network be-
havior of unknown sample to the profiles and choosing closest cluster, we
can determine class of each endpoint to which tested sample had connected
and potentially discover previously unknown C&C servers.

Many of the system concepts come from similar work described in [28].
However, our assumptions are different and we use different distance com-
putation algorithm used for clustering.
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2.4 Cross-layer threat data analysis

Threat analysis is a fairly traveled field as indicated by previous efforts in
completed FP7 projects, such as VIS-SENSE or WOMBAT. However, most
analyses focus on a single data source or multiple sources of the same kind.
Attempts at multi-layer analysis with focus on complex malicious campaigns
are mostly missing. The attempts are also scattered, with analytical tools be-
ing developed separately for different datasets. While WOMBAT’s common
data access API went a long way towards enabling multi-dataset analyses,
and with VIS-SENSE succesfully exploring the application of visual analyt-
ics to the task, the currently available tools do not fully exploit the various
kinds of data for operational purposes.

NECOMA focuses on building analytic capability in threat areas not suf-
ficiently covered by existing solutions and integrating the various analyses
into a single, consistent tool, with a focus on the security analyst. With its
truly international perspective and its range of datasets virtually spanning
across all layers, NECOMA offers a platform on which malicious activity can
be recorded to carry out multiple kinds of analysis. Such platform will not
only allow for multi-layer analyses to be carried out over different datasets,
but it will also allow researchers from different culture and background to
bring with them approaches to elicit knowledge by joining features from
different datasets in a cross-layer fashion.

2.4.1 Multi-layer vs Cross-layer

Figure 2.23: Cross-layer and Multi-layer analysis modules relation

As suggested previously, the term multi-layer has a broader meaning
than cross-layer. We may give a brief definition of both terms as follows:

• multi-layer pertaining to multiple layers, i.e., endpoint and infrastruc-
ture
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• cross-layer bridging the border between layers, i.e., endpoint and in-
frastructure (implies multi-layer)

These terms apply to both the threats to be analyzed and the methods
used to perform the analysis. As an illustration, we provide a few examples:

• in the context of threats, any attack on multiple layers is a multi-layer
attack (e.g., combining phishing with a simultaneous DDoS against the
original site), but the term cross-layer attack requires using one layer
to attack the other (e.g., using DNS spoofing to redirect to a phishing
site or using a drive-by-download to build a botnet and perform a
DDoS);

• in the context of threat analysis, processing multiple datasets from dif-
ferent layers always qualifies as multi-layer analysis, even if separate
tools and methods are used for each dataset, but a cross-layer analysis
means processing multiple datasets from different layers in a single
analysis with one or more anchors (such as IP addresses, time, ports)
to bridge the link between the two.

In particular, NECOMA integrates all analysis modules within the Threat
Analysis Platform as described in Chap. 4, which will allow for both multi-
layer and cross-layer analyses to take place as illustrated in Fig. 2.23. This
platform will allow an analysis to fetch a broader range of information to
individual features, to analysis results or raw data in order to perform com-
plex data mining operations. Correlating these pieces of information will be
achieved using one or more anchors, bridging datasets, even across layers.
In NECOMA, a number of these anchors, called tokens, have been proposed
and integrated into the n6 API.

2.4.2 A Taxonomy of Internet HTTPS Phishing Sites

Many users have been trained to trust websites using HTTPS and thus so-
phisticated phishers are now setting up HTTPS phishing websites in order to
fool victims and extract sensitive information from them. Without knowing
how such websites use HTTPS, efforts to combat them may be inefficient
or misguided. As a guideline for future efforts, we have created a taxon-
omy of HTTPS phishing sites based on the list of HTTPS phishing URLs
collected within the past two years. The URLs, together with environmental
evidences, were manually inspected and categorized. We have found that
more than 90% of the HTTPS phishing sites are parasitic, meaning that they
do not use their own SSL certificates, but use those of legitimate sites. The
three most prevalent categories are online forms, shared SSL domains and
hacked domains respectively.
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2.4.3 FP-growth based malicious campaign analysis

Frequent pattern mining is a widely used technique for discovering interest-
ing relations between data items in large databases. It is employed today in
many application areas including malware detection and Web usage mining.
In our research [50] we use the frequent pattern tree structure (FP-tree) – a
prefix structure for storing quantitative information about frequent patterns
in a database – and the FP-growth algorithm for frequent pattern discovery
using a divide-and-conquer strategy, both developed by J. Han et al. [38].

2.4.3.1 Operation of the analysis

The FP-growth algorithm operates in two steps:

1. The FP-tree compact structure is constructed,

2. Frequent patterns are extracted from the FP-tree.

In the first step the patterns occurrence in the input transaction database
is counted. Next, infrequent patterns are discarded, frequent patterns are
sorted by descending order of their frequency in the database, and the FP-
tree structure is built. Common, usually most frequent patterns are shared.
Therefore, FP-tree provides high compression close to tree root and can
be processed quickly. Recursive growth is applied to extract the frequent
patterns. FP-growth starts from the bottom of the tree structure (longest
branches), by finding all patterns matching given condition. New tree is
created, etc. Recursive growth ends when no patterns meet the condition,
and processing continues on the remaining main branches of the original
FP-tree.

The Support Vector Machine (SVM) [82] is a supervised learning classi-
fication method widely used in data mining research. The concept of SVM
is to classify each data sample into one of two categories: positive class
denoted by ”+1” and negative class denoted by ”-1”. Thus, the goal is to de-
termine a decision boundary, which divides data into two sets (one for each
class), a plane for n ≤ 3 or hyperplane for n > 3. Next, all the measure-
ments on one side of this boundary are classified as belonging to ”+1” class
and all those on the other side as belonging to ”-1” class. The problem is
that many such hyperplanes can be determined, and the best one has to be
selected. Hence, SVM tries to learn the decision boundary which gives the
best generalization. A good separation is achieved by the hyperplane that
has the largest distance to the nearest data sample of any class – a wider
margin implies the lower generalization error of the classifier. To select the
maximum margin hyperplane an optimization problem is formulated and
solved for a given training dataset.
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The original SVM model – linear classifier – was developed by V.N. Vap-
nik, [82]. The hyperplane is calculated as a solution of a quadratic optimiza-
tion problem. However, in many practical applications the datasets are not
linearly separable in the data space. To determine the hyperplane the orig-
inal space is mapped into a much higher-dimensional space, and a kernel
function is formulated and minimized. The kernel functionK(xi, xj) defines
the similarity between a given pair of objects. A large value of K(xi, xj) in-
dicates that xi and xj are similar and a small value indicates that they are
dissimilar. Various kernel functions are described in literature [42].

2.4.3.2 Implementation

The architecture of our system for malicious campaigns identification (FP-
SVM) is presented in Fig. 2.24. It consists of three main modules: a database
collecting malware URLs, a frequent pattern mining module that imple-
ments the FP-growth algorithm for frequent patterns discovery and a data
classification module that uses the SVM method to classify malware URLs as
related or not to a campaign. To produce the SVM classifier model we need

Figure 2.24: The architecture of the FP-SVM system.

a training dataset of URLs that have already been classified into campaigns.
Unfortunately access to such databases (if they exist) is restricted. There-
fore, the only sensible solution is to define some patterns of URLs related
with campaigns based on analysis of malware datasets, and generate a set
of samples containing these patterns. It is assumed that all these samples are
related with campaigns, and can be used to train the SVM classifier. In our
FP-SVM system the FP-growth algorithm is applied to produce the training
dataset. A fixed number N of URLs are selected from the database, and the
input dataset SURL = {URL1, URL2, . . . , URLN} for frequent pattern min-
ing is created. Each sample from SURL is tokenized. The simple heuristic
rules to break up a given URL (stream of text) into shorter strings described
in literature [16, 36] are adopted. Each sample is cut using specific charac-
ters that are typical for URLs, i.e., ”/”, ”.”, ”?”, ”#”, etc. As a final result of
this operation we obtain a set of tokens LT .
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This set of tokens becomes input for further processing such as parsing
and typical subsequence mining. The goal is to reduce the size of the dataset
consisting of extracted tokens and finally speed up the FP-tree generation.
The typical URL’s attributes which do not carry valuable information, such
as the schemes: ”http”, ”https”, domain name parts ”www”, ”org”, ”com”,
”waw”, etc. and extensions: ”exe”, ”php”, ”html”, ”xhtml” are excluded
from the set LT . Once the final set of tokens LET is built, the FP-growth
algorithm is employed to discover frequent tokens and the FP-tree structure
TotalFP storing quantitative information about frequent tokens from LET

is constructed. In this tree each node (besides root) represents an extracted
token that is shared by all subtrees consisting of itself and all the nodes be-
neath it. Each path in the tree shows a set of tokens that co-occur in URLs.
Thus two URLs that contain several identical frequent tokens and differ in
several infrequent tokens share a common path. The root is the node that
has no superior and separates all disjoint sub-trees. The TotalFP tree struc-
ture is analysed. Simple decision rules are used for data processing. These
rules define the characteristics of each URL that is suspected to belong to
any campaign.

The final FP-tree structure CampaignFP formed by URLs with these
characteristics is created. Next, all URLs from the dataset SURL contain-
ing the tokens from the CampaignFP tree are classified to the positive class
denoted by ”+1”, and form the set S+

URL of URLs forming malicious cam-
paigns. Other URLs from SURL are classified to negative class denoted by
”-1”, and form the dataset S−URL consisting of URLs that are unrelated to any
campaign. Both these datasets form a training set of samples that is used
to produce the SVM classifier model. The relevant attributes used for URL
classification are selected. The commonly used attributes assigned to URLs
are: date, time, address (IP, ASN), length of address, domain name, length
of domain name, number of subdomains, path name, length of path name,
number of subpaths, length of query, number of queries, country code, con-
fidence of code. The selection of adequate attributes is a key feature that
guarantees the effective and efficient classification.

Next step of the SVM algorithm is to learn the decision boundary. Four
variants of the SVM classifier with linear and nonlinear kernels are im-
plemented in our FP-SVM system. The following nonlinear kernels are
provided: polynomial function: K(xi, xj) = (γxTi xj + r)d, radial basis
function: K(xi, xj) = exp(γ ‖ xixj ‖2), sigmoid function: K(xi, xj) =
tanh(γxTi xj + r), where γ > 0, r, and d denote kernel parameters. Finally,
the trained SVM classifier can be employed by malware detection systems to
classify malicious URLs taken directly from the Internet as related or unre-
lated to known malicious campaigns. Note that suspicious, unverified URLs
can also be analyzed – if they are found likely to be part of a campaign, their
malicious status is confirmed.
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The algorithms considered in this section are not limited to URLs. Ap-
plication on domain names is also possible and potentially interesting. Ex-
periments involving japanese DNS datasets are currently being performed.
Since these records belong to the infrastructure layer, the analysis is clearly
multilayer. Mixing the two datasets, e.g. by learning on URL sources and
applying the classification to DNS sources, is therefore clearly a cross-layer
analysis.

2.4.3.3 Performance evaluation

The n6 database collects data taken from various sources, including secu-
rity organizations, software providers, independent experts, and monitoring
systems serviced by CERT Polska. The datasets contain URLs of malicious
websites, addresses of infected machines, open DNS resolvers, etc. Most of
the data is updated daily. Information about malicious sources is provided
by the platform as URL’s, domain, IP addresses, names of malware, etc.
We have performed a preliminary analysis of 27 700 560 URLs collected in
year 2013 and stored in the n6 database. Figure 2.25 depicts the amount
of malicious URLs observed per day (in a selected month) and per month.
The average number of observed URLs is about 80 000 daily or 2 300 000
monthly.

Figure 2.25: Malicious URLs detected during a day and during a month.

The aim of the experiments was to validate the FP-SVM system on the
n6 dataset. First, N malicious URLs were selected from the n6 malware
database. They formed the SURL training set. Next, frequent pattern anal-
ysis was applied and the TotalFP tree with nodes representing tokens ex-
tracted from URLs from the SURL dataset was constructed. The follow-
ing rule was used to extract the subtree CampaignFP from the original
TotalFP tree. We assumed that all URLs containing m common tokens in
a sequence were suspected to be related with the same campaign. Hence,
short branches with less thanm nodes were excluded from the TotalFP tree.
The TotalFP tree and the approach to the CampaignFP tree generation are
presented in Fig. 2.26. Table 2.11 presents the results of the application
of the FP-growth algorithm and our decision rule with m = 4 to the SURL
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Figure 2.26: Frequent patterns tree and a campaign extraction.

dataset. It contains the number of detected malware campaigns and average
number of URL’s tokens related with one campaign.

Table 2.11: Identification of malicious campaigns; the SURL dataset.

Number of URLs (number of IP) 500 000 (108 745)
Number of unique URLs (number of IP) 69 906 (5 321)
Number of detected campaigns 72
Average number of related attributes 84 per campaign

Next, the input training set of URLs SURL = S+
URL ∪ S

−
URL was used to

produce the SVM classifier model. Various sizes of SURL were considered,
i.e., N = n · 100000, n = 1, 2, 3, 4, 5. The decision borders for classification
were calculated and validated for each size of SURL. Finally, the trained
SVM classifier was applied to malware campaign detection. It was used
to classify the dataset consisting of 80 000 malicious URLs (unrelated with
URLs from training dataset) into two categories: +1 – URLs related with any
campaign, -1 – URLs unrelated with any campaign. Then, the quality of the
classification was assessed. The following commonly used criteria were con-
sidered: classification accuracy (CA) – ratio of number of correctly identified
URLs to the size of the dataset, sensitivity – the proportion of positives that
are correctly identified as such, specificity – the proportion of negatives that
are correctly identified as such, accuracy of a test (AUC) – the measure that
shows how well the test separates the URLs being tested, Precision – how
close the separated URLs are to each other, F-measure – another measure of
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a test’s accuracy. The values of all mentioned criteria obtained for various
variants of SVM classifier (providing linear and nonlinear kernel functions)
and a training dataset SURL consisting of 250 000 malware URLs are col-
lected in Table 2.12. Figure 2.27 shows the accuracy of the classification for
various sizes of the training dataset. In general, the results presented in

Table 2.12: Evaluation of SVM classification; N = 250000 URLs.

Radial Sigmoid Polynomial Linear
CA 0.7035 0.5571 0.5000 0.3495
Sens 0.8750 0.7083 0.4375 0.6042
Spec 0.8202 0.6685 0.8258 0.6011
AUC 0.9250 0.8653 0.8367 0.7823
F1 0.6885 0.4823 0.4200 0.3919
Prec 0.5676 0.3656 0.4038 0.2900

Figure 2.27: Accuracy of classification; various sizes of the training dataset
SURL.

Fig. 2.27 and Table 2.12 confirm that the accuracy of classification strongly
depends on the dimension and quality of a training dataset. Moreover, it is
very important to choose the adequate kernel function. The achieved classi-
fication accuracy ranged from about 35% to 70%, accuracy of the test from
78% to 93%, sensitivity from 44% to 88%, and specificity from 60% to 82%.
Explicitly, the worst results were obtained for the SVM variant implement-
ing a linear kernel function. The best results – the best values of all criteria
– were obtained when employing the radial basis kernel function.

2.4.4 Graph-based malicious campaign analysis

Availability of multiple rich datasets within NECOMA is naturally a great
opportunity for automatic analyses, extracting valuable information from
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a wealth of data far beyond any possibility of effective manual analysis.
Significant value can be provided by searching for related information based
on an interesting entry in one of the datasets. Automating such a process is
potentially a useful part of the platform envisioned in NECOMA.

2.4.4.1 Graph representation of the information in NECOMA datasets

One of the results of our work performed within the NECOMA project was
the identification of a set of common tokens that appear in multiple datasets
of different types and even layers. These tokens, such as IPs, MD5 hashes,
domain names, can be used to correlate data from different datasets. The
graph-based analysis proposed in this section is a simple tool enabling explo-
ration of the entire collection of datasets based on seed tokens: interesting
values either identified by other analyses, or obtained in a different way by
the user of the system. The goal of the approach is to find as much infor-
mation related to a given token as possible, while limiting the cost of such
operation.

Related information within different datasets can be modeled as a graph,
with information from a single dataset represented as a node and shared to-
kens represented as edges. Thus, for example, an identified spam campaign
(dataset A) can share a URL with a phishing site (dataset B), which may
share an IP with an exploit server (dataset C) and so on. Depending on the
level of linkage between various datasets, a graph constructed in this way
can be arbitrarily large, as each new node may introduce several new tokens.
In general, the entire collection of data within NECOMA can be modeled as
a single large graph. Obviously construction of such a graph is neither re-
alistic nor useful, due to its size. However, a well chosen subgraph can be
very useful as a source of contextual information. A well designed subgraph
can answer many important questions, such as whether an address (either
IP or URL) was used to host malicious content, whether a URL is related to
a given spam campaign. It can even be used to reconstruct a significant part
of the infrastructure of a botnet based on a single C&C server.

Unfortunately building such a graph is an iterative process, where each
new token requires a new query to all datasets containing tokens of that
type. Given the globally distributed nature of the NECOMA system, such
operations may be time- and resource-consuming.

2.4.4.2 Search algorithm

The rating mechanisms proposed in chapter 3 enable us to enhance the
process, aiming at extracting the most valuable information with reasonable
amount of effort. To achieve that we want to focus on queries most likely to
produce interesting results, limiting less promising ones.
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The starting point of the procedure is a single interesting token. The
token can be taken from one of the datasets or a user-provided value. Alter-
natively, the output of the other analyses within NECOMA can be redirected
to this analysis to be enriched with related information from other datasets,
which may not have been used in the original analysis. Starting with such a
root token, a graph of related entries should be built. A recursive, depth-first
approach is a simple way to achieve a full graph, but – as mentioned before
– this is costly and may result with a graph far too large to be useful, with
little or no relation between nodes connected by longer paths. Limiting the
depth of search (whether depth-first or breadth-first) will prevent such un-
controlled growth, but does not take into account the different probability
of getting a non-empty result, generating unnecessary queries, while at the
same time possibly cutting some very promising branches. Our solution cre-
ates a graph of tokens and assigns a cost to each query, building the graph
by selecting cheapest queries until a preset budget is consumed.

One important characteristic of this approach is that each token is also an
identifier of a single node of the graph. Therefore, whenever the same token
is encountered again, it will not create a new node; it will be appended to
the original node with the new information.

Our solution builds the graph using a growing set T of tokens t0, . . .,
where t0 is the root token. Each token is of a certain type τ(tk), which
identifies the set D(τ) of datasets that contain tokens of this type. For each
token we define the following associated information:

• Dn(tk) – the set of datasets not yet queried about the token,

• Dv(tk) – the set of datasets already found to contain the token,

• I(tk) – the set of dataset entries containing the token.

For a simplified description of the algorithm, assume a cost function
ξ(t, d) and initial budget C.

We start by setting T = {t0}, Dn(t0) = D(τ(t0)), Dv(t0) = ∅. Now the
procedure for building the graph is as follows:

1. Select a pair (t̂, d̂) such that d̂ ∈ Dn(t̂) and ∀t∈T,d∈Dn(t)ξ(t̂, d̂) ≤ ξ(t, d).

2. If ξ(t̂, d̂) > C, STOP. Otherwise decrease the budget C by ξ(t̂, d̂).

3. Remove d̂ from Dn(t̂).

4. Query dataset d̂. If the token is found:

(a) Add the obtained information to I(t̂).

(b) Add d̂ to Dv(tk)
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(c) Extract new tokens t′i, i = 1 . . . not yet present in T from the
obtained information and – if found – add them to T .

(d) For each new token set Dn(t
′
i) = D(τ(t′i)), Dv(t

′
i) = ∅.

5. Return to step 1.

The effectiveness of this approach depends on the cost function ξ(t, d).
To be effective it must take into account the rating results for the different
datasets. The basic cost should be proportional to the likelihood of finding
the token t in dataset d, which depends both on the characteristics of the
dataset itself and the linkage between it and other datasets in Dv(t). Ad-
ditionally, the cost function should reflect the actual difficulty of the query,
delay due to geographical location, etc. Therefore the actual design uses
four separate functions:

• fc is a simple cost function, reflecting the difficulty of obtaining infor-
mation from a given source for a given token type,

• fu is the utility function of adding a given token to the graph, involving
the different ratings of the dataset (for a cartain token type),

• fs is the strategy function mapping the values of the above two func-
tions into a choice of token and dataset providing the best expected
cost/utility ratio.

The fu function hints at the existence of a more general function fU ,
measuring the utility of the entire graph. In this case fu is the expected
increase of fU if a certain token is used to query a certain dataset.

The utility and cost functions need to be defined for each dataset sepa-
rately. Not all tokens of the same general type are equally interesting infor-
mation – an IP address of a C&C server is clearly different than simply the
IP address for a given domain name, even if the domain itself is malicious.
In most cases the queries should also be limited to a certain time period, but
that is also dataset-dependent.

The proposed analysis has two separate use cases.
In a interactive mode it is a tool used to explore the datasets, starting

with a manually chosen token. Since in this case the nodes to be expanded
can be selected by the user, the utility and strategy functions must include
this choice as an important part. Each selection by the user increases the
budget, but the further expansion should focus on providing information
associated with the selected token. The utility function fU measures the
information content of the graph as the goal of the analysis is to increase
the information available to the user.

In automatic mode the analysis processes tokens provided by other
analyses or taken from some interesting datasets. The utility functions are

www.necoma-project.eu 56 November 30, 2014



2.4. CROSS-LAYER THREAT DATA ANALYSIS

different in this case and focus on the chance of identifying clearly malicious
behavior. Datasets registering malicious events with low false positives ratio
are more important in this case. Once the budget C is expended the utility
function fU of the graph is a base for final decision – if the utility is low, the
results are not considered interesting. The generated graph may be stored
for a short period of time in case the analyzed token proves interesting for
other reasons – in this case the graph is a source of additional information
for the user. If the utility is above a preset threshold, the graph is always kept
and the user of the platform is alerted that the starting token was identified
as part of more complex malicious action. The graph can then be further
expanded in interactive mode, using more information-centric utility func-
tions.

The precise tuning of cost, utility and strategy functions require practi-
cal experience with multiple datasets and is relegated to the final stage of
NECOMA development.

www.necoma-project.eu 57 November 30, 2014



CHAPTER 2. DATA AGGREGATION AND ANALYSIS

www.necoma-project.eu 58 November 30, 2014



3
Development of automated rating and classification

mechanisms

3.1 Taxonomy of Anomalies in Backbone Traffic

Anomaly detection techniques for backbone traffic rely on diverse statis-
tical methods such as wavelets [8], Kalman filters [78], hash projection
[49, 27, 13], principal component analysis (PCA) [52, 46], and pattern
recognition [33]. These techniques however provide little or no informa-
tion regarding the nature of identified anomalies. Since inherent features of
anomalies, such as connection patterns, protocol usages, and traffic volume
are essential to evaluate the effect of anomalies on network infrastructure,
we propose a taxonomy for network traffic anomalies to classify anomaly
detector results.

Our goal here is to assist network administrators to monitor anoma-
lous traffic by providing a framework to classify anomalies into precise and
meaningful categories. Previous works address network anomaly classifica-
tion but usually for a limited and specific set of categories (less than 10).
[53, 89, 30, 76, 80]. Detailed taxonomies have also been proposed. These
either focus on a specific type of anomaly like distributed denial of service
(DDoS) attacks [58] or scans [9], or consider network anomalies in general
[69, 59]. These taxonomies provide diverse, non-overlapping and thus in-
complete coverage of all known network anomalies. Furthermore, none of
these works provide any material that would allow third parties to easily
reproduce the results.

3.1.1 Proposed Taxonomy

We propose a network anomaly taxonomy, consisting of a set of anomaly
labels (e.g., Denial-of-Service, scan, outage) and corresponding signatures.
We build the taxonomy through an iterative process that we bootstrap by ap-
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Figure 3.1: Overview of the proposed taxonomy for backbone network traf-
fic anomalies. The complete taxonomy includes more than 100 different
labels.

plying expert knowledge on network anomalies. We then iteratively refine
our anomaly descriptions by carefully examining events that are flagged by
detectors but not classified in the taxonomy. Such events are carefully ana-
lyzed, and appropriate signatures are built if an interesting and previously
uncharacterized behavior is observed.

Figure 3.1 depicts the overview of the proposed taxonomy. It consists
of two main categories: anomalous and normal events. Anomalous events
comprise denial-of-service and scans, while normal events include heavy hit-
ter, alpha flows, point-multipoint traffic, and other kinds of events (outages,
tunnels, small point-to-point flows). Some events may be considered either
legitimate or malicious depending on the context. For example, scans can
be research activities [74] or attack precursors. In this work, we follow a
conservative and pessimistic approach that considers scans as anomalies.

The taxonomy is built as a tree in which each node contains an anomaly
label. The closer a label is to the root of the tree, the more general it is.
Each label may be associated with a signature. A signature is a set of rules
specifying detailed traffic features representing the nature of an event. Our
current implementation comprises more than 100 different signatures cov-
ering all taxonomies reported in previous works. The proposed signatures
are also made publicly available on the Internet [56].

3.1.2 Signature Matching

We assign a single label to each anomaly identified in backbone traffic. We
first try to match an event with a label belonging to the subtree whose root
is the node labeled “anomaly” in Figure 3.1. If there is no match, we repeat
this process with the “normal” subtree. If there is still no match, the event is
labeled as “unknown”. One event can match several signatures inside one of
the two subtrees. In this case the assigned label is the most specialized one,
or in other words, the one furthest from the root. Therefore, we ensure that
anomalies are annotated with the most accurate labels. The proposed sig-
natures have been evaluated with 6 years of network traffic from the MAWI

www.necoma-project.eu 60 November 30, 2014



3.2. AUTOMATED RATING AND CLASSIFICATION OF NETWORK THREAT
INFORMATION

repository [56]. Our study using real traffic shows that our results improve
on previous classification results by reducing the proportion of unknown
events and providing new insights in terms of anomaly occurrence.

3.2 Automated rating and classification of network
threat information

Several honeypot designs have been proposed. The two main axes upon
which a honeypot is designed is the level of interactivity with the attackers
and which side is targeted by the attacks the honeypot will monitor. Con-
cerning the level of interactivity, honeypots can either do simple service em-
ulation (low-interaction), more advanced emulation (medium-interaction)
or run real services (high-interaction). As far as the second axis is con-
cerned, we can categorize honeypots as server-side or client-side. The vast
majority of honeypots protect the server side. The fundamental difference
between the two types is that client-side honeypots search for attackers,
instead of waiting to be attacked.

Low-interaction honeypots. Low-interaction honeypots only superfi-
cially simulate services. They provide very limited interactivity compared to
high-interaction honeypots, but are still useful to lure attackers and gather
information at a higher level, e.g., detect network scanning activities. A
powerful characteristic of low-interaction honeypots is their ability to en-
able a single host to claim multiple addresses and run multiple services on
each address.

Medium-interaction honeypots. Medium-interaction honeypots also
emulate services but, unlike low-interaction honeypots, they do not manage
network stacks and protocols themselves. Instead, they bind to sockets and
leave the connection management up to the operating system. They mainly
focus more on the application-level emulation part, instead of implementing
network stacks and protocols as the low-interaction honeypots do.

High-interaction honeypots. High-interaction honeypots, unlike the
two previous categories, do not emulate services. On the contrary, they run
services in their native environment. Thus, high-interaction honeypots have
the advantage that they are real systems; no emulation is used, no fake ser-
vices run. Therefore, unknown bugs are still present and can be exploited.
By being vulnerable to attacks, they can provide useful information on how
previously unknown threats emerge and propagate.

3.2.1 The FORTH honeypot network

The FORTH honeypots core is not a centralized farm of honeypots used to
gather information in the NECOMA project. On the contrary, it is a dis-
tributed set of honeyfarms that can collaborate. Inside the core, multiple in-
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stances of AMUN low-interaction honeypot are deployed. These honeypots
are able of capturing autonomous spreading malware from the internet. To
do so, they emulate various existing vulnerabilities. When an attacker tries
to exploit an emulated vulnerability, the received payload is analyzed and
any contained URL is extracted. Then, the honenypots attempt to download
all the malicious binaries, which are stored locally for further analysis.

3.2.2 Automated rating and classification of FORTH honeypots
threat traffic

Here we propose an automated rating and classification design that can
be applied on the data collected from the network of FORTH honeypots.
FORTH honeypots passively wait for attackers to attack them. By default,
all traffic destined to FORTH honeypots is malicious or unauthorized as it
should not exist in the first place; FORTH Honeypots monitor a portion of
a dark (i.e., unused) address space in order to be able to identify possible
incoming attacks.

Information collected by the FORTH honeypots is stored in a database.
This information is in form of threat incidents. These threat incidents con-
tain all the necessary information of the attacks received by the honeypots,
that is the origin of the attacks (e.g. source IP address and port, the com-
munication channels used, the included payloads).

FORTH Honeypots

threat
database CasperJS

(Headless Webkit) Blacklist

Rating

Figure 3.2: A generic overview of the proposed rating system.

An automated rating and classification system on the traffic gathered by
FORTH honeypots, could be based on external knowledge, derived from the
web (e.g., search engines, blacklists), in order the most prevalent threats
to be identified. The input provided to this system could be the top at-
tack sources, gathered by the FORTH honeypots, based on a characteristic,
e.g., the attack frequency (i.e., how many times a source IP address tried
to communicate with our FORTH honeypots). Then, a web scraper could
be used, that will try to find each one of these sources in the various web
sources. Such web sources may be various search engined (e.g., Yahoo!,
Google, etc.) and various blacklists. An overview of the design of the pro-
posed system is illustrated in Figure 3.2. As we can see, the data derived
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from FORTH honeypots’ database, that is the top attacking sources based
on the current knowledge, will be furthered searched out in various search
engines and blacklists. A score will be created based on the number of ap-
pearances of such sources in the results of the search engines and in those
of the blacklists. This cross-checking could help us to rate and classify the
threat traffic of FORTH honeypots.

As shown in the Figure 3.2, different kind of distributed networks, could
be used in order to successfully perform multiple search engine queries, as
search engines often apply a requests limit to a number of certain queries
that a single IP address can made in a time window. If this limit is ex-
ceeded, then a measure is triggered; for example Google requires solving a
CAPTCHA, in order to be able to continue. We could address this problem
by leveraging distributed networks, such as TOR and PLanetLab, and using
them as proxies.

3.3 Automated rating of data sources for graph-based
analysis

The wealth of datasets available in NECOMA are a valuable resource, but
at the same time provide an interesting problem, as the usefulness of infor-
mation differs significantly between different sources. This aspect is most
important when the selection of a dataset to query is to be made automati-
cally, as in case of the graph-based analysis described in section 2.4.4. The
most effective approach to this problem is to rate the available datasets on
various qualities. For obvious reasons preferred rating methods are those
that can be effectively automated.

The following section discusses various properties that can be used to
rate usefulness of datasets. The choice of properties to decide if a dataset
is useful or not obviously depends on the use case. The following text does
not deal with this problem, the selection of the right ratings is delegated to
the analyses that require dataset ratings. Moreover, the described properties
are not normalized, at least in their current form.

This section builds on the work of A. Pinto and K. Maxwell [68].

3.3.1 Rating of datasets with mixed activity

This section refers to datasets containing both benign and malicious activity,
with no labels, such as backbone traffic or DNS queries.

Coverage. Given a particular activity of interest (e.g. DNS queries glob-
ally, traffic to/from a particular country), determine how much of this ac-
tivity is captured in the dataset under examination. It can be viewed as an
absolute measure of the volume of data. Proposed methods are dataset-
specific. For example:
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• backbone traffic the ratio of the number of IP addresses observed
communicating to the number of IP addresses allocated globally,

• DNS queries to root servers the ratio of the number of IP addresses
observed asking to the estimated number of all DNS resolvers globally,

• DNS queries to local resolvers the ratio of the number of IP addresses
observed querying to the number of IP addresses allocated globally.

All the values used should be computed over a common, fixed-length
period. The rating scales naturally – better ratio is a better rating.

In case of a global platform, such as NECOMA, the rating can be com-
puted in two different ways – globally or locally. The global case shows the
amount of collected data compared to the total global amount of data of a
given type. The local case is limited to the monitored space. The two rat-
ings are very different – e.g. a dataset providing a complete record of all
backbone traffic in a single country would obviously have a maximal local
rating, but a relatively low global rating. On the other hand, collecting a
small sample of traffic on all backbone links would create a dataset with
local and global rating equal but low.

Representativeness. This rating is based on country or ASN distribution
based on observed IP addresses and is difficult to compute for some datasets.
First we compute a reference distribution (based on all other data sets for
example) then compare it with the distribution in the examined dataset.
The representativeness of a dataset is better if the two distributions are more
similar.

Linkage. This very useful rating measures the degree of correlation with
other datasets. This property would provide an estimate how useful a par-
ticular dataset is in context of analyses that combine multiple datasets. It
is very much dependent on other datasets that are already collected – the
reference set.

Computing linkage is base on the assumption that all datasets are col-
lections of events, where an event is a collection of tokens (IPs, domains,
URLs). The datasets are compared over a chosen time range (e.g. week),
the procedure can be repeated for multiple overlapping or non-overlapping
intervals. The linkage is the proportion of tokens that the examined dataset
has in common with the reference set in the given period. The whole pro-
cedure can be repeated to rate all datasets, leaving one out for examination
and using the rest as the reference set.

Another useful rating is a linkage map, which rates the amount of com-
mon tokens between each pair of datasets separately. Computing this type
of rating is relatively simple, but it does require a large amount of data –
O(n2) where n is the number of datasets being compared. This approach is
described later, as a NECOMA-specific rating.

www.necoma-project.eu 64 November 30, 2014



3.3. AUTOMATED RATING OF DATA SOURCES FOR GRAPH-BASED
ANALYSIS

3.3.2 Rating of threat datasets

These datasets contain only known threats (URLs, IPs, etc) and no benign
activity, apart from false positives. Examples of datasets include all datasets
currently in n6, spam, etc.

False discovery rate. This rating is usually defined as the ratio of the
sum of false positives to the total number of all alarms. Potentially this
is a very good measure, however in most cases it is difficult to determine
whether an alarm is a false positive. In some cases automatic methods
could be developed to correlate a threat dataset with a mixed one to confirm
alarms (e.g. perhaps it is possible to identify C&C servers based on backbone
traffic characteristics), but accuracy of this method of confirmation would
have to be known precisely, which is almost impossible in real-life. More-
over, since attacks can be targeted (watering hole attacks), even a perfect
method can not verify all classifications. Due to these difficulties, we will
not investigate this possibility further.

Rate. In general this rating measures the amount of data collected by
a given dataset. For blacklists this rating is best expressed as the rate of
change – how many entries added or removed daily. For sources producing
a stream of discrete events, the rating is calculated as the number of unique
IPs, domains or URLs per day.

This statistic provides an information on the volume of data but if sources
collect information on different threats (e.g. different botnets), this value is
not comparable. Even if sources report data on the same threat (e.g. the
GameOver Zeus botnet) a source providing more data is not necessarily bet-
ter – the real value of the dataset depends on the quality of data, measured
as the false positives rate. Pinto and Maxwell define this property as “nov-
elty”, however they focus on IP blacklists.

Delay. Applicable for sources where it is possible to determine the time
between detecting a threat and reporting it. Descriptive statistics can be
used to compare delay introduced by various sources. This property can be
used to compare almost all sources. Smaller delay indicates a better source.

Representativeness. In principle this rating would work the same as
for datasets with mixed activity. Pinto and Maxwell have a similar approach
for IP blacklists – they use the term “population” when referring to methods
to investigate country distribution in datasets. They use GeoIP database
to establish the number of IP addresses in countries and then apply two
methods for comparison against distribution in a particular threat dataset
that are under examination: exact binomial test and chi-squared proportion
test. Authors propose to use this information for trend analysis and data
cleanup (not necessarily to rate datasets directly).

A known problem with this statistic as applied to malicious datasets is
the skew of data depending on the source, e.g. traffic reaching honeypots in
different countries varies greatly.
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Linkage. This statistic is exactly the same as in mixed datasets.
Furthermore, there is a key difference between the cited source and the

NECOMA platform. Pinto and Maxwell correlate all datasets pairwise in sim-
ilar way, however they use the term “overlap” and focus on getting unique
tokens, assuming that availability of the same token in two datasets signi-
fies the same event and is therefore redundant. In NECOMA the situation
is quite different – most datasets were built independently and describe dif-
ferent phenomena. Therefore in our case high linkage (overlap) is actually
desired and allows better, more productive correlation.

3.3.3 NECOMA-specific ratings

Cross-dataset linkage. The linkage ratings proposed above are limited
through their global scope. For a fixed list of datasets it is possible to define
a more practical measure of connection between the different datasets – a
direct statistic determining the probability of a given token to appear in two
different datasets. The probability can be directly measured a posteriori, by
calculating the percentage of tokens from one dataset appearing in the other
dataset.

Early results based on URL data from the n6 database and Japanese DNS
records show, that the geographical separation of European and Japanese
sources is very strong. E.g. very few IP addresses appear in both datasets.
On the other hand, the cases where the same tokens appear in such geo-
graphically separated datasets are especially interesting, as they represent
globally significant phenomena.

User rating. While the automatic ratings can be very valuable in terms
of the amount of collected information, there is no universal method of
automatic verification of the value of the provided data. Therefore it is
crucial that collected data be rated by users of the platform. Manual input is
most useful in case of the graph-based analysis, where ratings can be given
for information provided by individual nodes in the graph, easily tied to the
datasets providing the information.

3.4 Automated rating of external knowledge sources

Automatic collection of associated external knowledge for events identified
by the NECOMA platform is a relatively simple but important task. The ex-
ternal knowledge collection mechanism developed in WP1 employs existing
search engines to locate information relevant to a given token.

The main problem in this approach are the limits set by the operators
of search engines. Most effective search engines tend to set limits on au-
tomated use, allowing only a certain number of requests per period (hour,
day, etc). More queries are allowed in case of paid access to the API.
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The NECOMA platform is expected to produce new tokens at a rate far
exceeding the allowable query rates of most of the existing search engines.
Using only free APIs is therefore only possible if external information is only
gathered on demand, or newly identified tokens are prioritized and external
information is collected only for the most interesting ones.

The alternative to this approach is to purchase paid access to one or
more search engines. This approach guarantees the ability to collect exter-
nal knowledge whenever it is available. However, since the algorithms used
by different engines differ, the amount of results obtained for a given to-
ken may differ significantly. Therefore selecting the most effective engine is
important from the economical point of view.

The natural solution to this problem is to use a running rating of various
available sources of external information and use the best search engine as
the primary source. The proposed solution is to launch the platform using
only free services for external knowledge, limiting the number of queries to
stay within the limits (obviously resulting in many ignored tokens). During
this period, statistics on result count per token for each search engine would
be collected. The search engine providing the most results for a typical token
should be selected as the main source of external knowledge.

Since the algorithms used by search engines are constantly updated, the
search engine selected using this approach will not be guaranteed to be the
most efficient source of information forever.

Instead of focusing on only one search engine, the NECOMA platform
will use a more dynamic approach. One search engine will be the main
source of information – for each newly generated token, a query will be
sent. However, the alternative search engines will not be abandoned. For
each engine, random tokens will be selected at a rate corresponding to the
limit set by the search provider. For each engine statistics of result count
will be collected. Whenever an alternative search engine reaches an average
result count higher than the selected engine (only for the same tokens) and
that result remains stable for several weeks, a change of the selected engine
will be suggested.

The proposed approach ensures optimal allocation of resources, as long
as the decision about changing the search engine is not automatic, but in-
volves both the rating results and the current pricing of all alternative solu-
tions. Unfortunately access to search engines is not usually covered with
a single fee – the payment covers a certain number of queries, usually
not large in comparison to the predicted rate of token generation within
NECOMA. Therefore the actual decision must take into account the pric-
ing model of each engine as well as the result count. It is also possible to
combine this with other measures, such as user rating of usefulness of the
provided results. It is also possible to introduce separate selection per token
type measuring the result count for each token type separately (as in case
of the linkage metric for datasets).
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Initial architecture and design principles of the threat

analysis platform

4.1 Initial architecture design

At this stage of the NECOMA project we have a clearer view of all the com-
ponents and modules that will be part of the system. In addition, we also
identified initially interfaces that will serve the purpose of information ex-
change between the NECOMA system and external components, endpoints
and users.

The current design of the system is an update and extension of the design
proposed during the activities related to WP1. With the current achieve-
ments and advance on the projects research activities, we are able to define
better particular components and outline the system as a whole.

Because of the current complexity of the system and the process flow,
the description will follow a step by step explanation of the information
flow across the system describing particular components on the way.

Figure 4.1 illustrates the current architecture design, and will be referred
to during the process flow description, which begins with data gathering
and ends on effective exploitation of the various analyses results. Particular
components of the architecture are marked in bold text in the description.

Data and information gathering
The whole process begins with data capturing, at various points by
collection probes, on different levels of the infrastructure and end-
point devices. The complete list of datasets in the NECOMA consor-
tium possession, coming from endpoint and infrastructure levels, is
available in deliverables D1.2 and D1.3. The descriptions provided in
the deliverables include the data formats and sampling methods used
in order to capture the data.
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Figure 4.1: Architecture Design

Additionally, the standard probing techniques are enforced by au-
tomatic knowledge gathering mechanisms which are able to au-
tonomously capture raw data coming from different sources. The raw
data collected is stored along with other datasets and later can be
shared. Initial designs of such mechanisms were proposed in deliv-
erable D1.1. Currently, this kind of mechanisms are implemented as
various types of web crawlers and other components such as Token
Seeker.

Data storages
All the raw data collected by all the probes and automated gathering
mechanisms is stored in the NECOMA systems data storages which
hold both, infrastructure and endpoint datasets. Because of the
complexity and volume of data belonging to different datasets, cur-
rently each datasets has its own storage. Despite that fact, the data
is effectively shared between the analysis modules. One of the ongo-
ing investigations is exploring ways of effective dataset sharing while
maintaining proper security and privacy mechanisms, at the same time
allowing external clients to make use of the datasets, also allowing
them to add their own datasets to the system.

Although the datasets in general do not share a common data storage,
some related analyses do share a common storage. Eg. this is the
case with the tighlty coupled hadoop-based analyses. Details of this
approach are described in the next section.
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Data analysis
The analysis modules functioning in the NECOMA system can be di-
vided into three main types: infrastructure-layer analysis modules,
endpoint-layer analysis modules and cross-layer analysis modules.
While the first two modules analyse datasets coming from the corre-
sponding layers, the cross-layer analysis modules perform analysis on
correlated data coming from both layers.

The second layer of analysis shown in the diagram, the multi-layer
analysis modules processes the results of the first-layer analyses –
either single-layer or cross-layer. This layer of modules is optional, as
the goal of the NECOMA platform is to enable such multi-layer analysis
to be performed by the user. Therefore in most cases the results are
simply forwarded/kept. This is also the place where feedback between
analyses can be implemented, eg. most significant tokens found by
different analyses can be redirected to the graph-based analysis for
further processing.

Detailed descriptions of all the analysis modules, that are included
(or plan to be included) in the NECOMA system, are provided in this
document in Chapter 2.

Threat information sharing
The threat information sharing component (TISC) is an abstract
concept, where ways for an efficient and effective implementation are
under investigation. The component will serve as an orchestrator for
exploitation and sharing of the analysis results and obtained threat
information. It will keep track of all the available sources of threat
information, including external sources collection component. The
TISC will serve as an intermediate component between the resilience
mechanisms and actual threat information databases, retrieving the
threat information from the relevant databases by itself and serving it
to the clients on request or in real time.

Threat information exploitation
Currently there are two main exploitation means foreseen for the threat
data obtained by the analysis modules. The first one is through re-
silience mechanisms that will try maintain acceptable levels of avail-
ability of the protected targets, despite disruptions, through reconfig-
uration e.g: change firewall filtering table (the complete definition
of reconfiguration is available in deliverable D1.1 in the introduction
chapter). The second way of exploiting the analysis results will be
through, so called, communication mechanisms, that will be de-
scribed in detail in deliverable D3.2. The communication mecha-
nisms will be effective machine-to-machine and machine-to-human
interfaces for threat data sharing with the aim of reaching a broad au-
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dience consisting of users from different fields. Machine-to-machine
interfaces will enable external users to ’plug in’ their devices to the sys-
tem to be able to, in an automated manner, reach information about
threats that might affect the devices. Machine-to-human interfaces
will provide means for displaying human-readable, easy to understand
alerts based on the threats identified by the system.

4.2 An analysis platform based on Hadoop

Some of our analysis modules are designed to be implemented as hadoop
applications since they require much computation resources. The high com-
putational requirements enforce a deeper integration of the related mod-
ules. The basic design of our hadoop-based analysis platform, which is
called MATATABI serving Data storage and Data analysis framework func-
tionality in our initial architecture design (§ 4.1), is described in Deliverable
1.1. In this section, we describe the designed modules of threat analysis
based on the MATATABI. This is an instance of Data storage and analysis
component of our architecture which tries to tackle a couple of challenges
of cross-layer and multi-layer threat analysis. Note that the integration does
not limit the ability of the system to function in the basic roles assigned by
the architecture – the datasets are still available to the other analyses.

4.2.1 Overview

MATATABI is a system based on Apache Hadoop software to analyze a huge
amount of datasets and detect threats. It handles the variety of data sources
and provides useful data access methods like SQL-like language with a rea-
sonable processing performance. The detailed example how to implement
an analysis module on MATATABI is also described in Deliverable 1.1.

Figure 4.2 illustrates the overview of MATATABI, while it provides Data
storage and analysis modules framework for our initial architecture.

Our developed analysis modules are simple scripts or programs that can
access data on Hadoop Distributed Filesystem (HDFS) and process it with
a familiar program language for various post-processing methods such as a
statistical calculation or machine learning, etc.

4.2.2 Analysis modules on MATATABI

In this section, we present the summary of implemented analysis modules
on top of MATATABI.

ZeuS DGA detector
The first case is the detection of compromised hosts by the ZeuS botnet in
an enterprise network by scanning DNS queries with a particular pattern of
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Figure 4.2: Overview of MATATABI. Based on the Hadoop platform, we inte-
grated the data storage with import modules, analysis scripts, and an appli-
cation programing interface in a single platform.

’[a-z0-9]{32,48}.(ru|com|biz|info|org|net)’

Figure 4.3: Regular expression of a DGAed domain name.

domain names as shown in figure 4.3. This module detects compromised
hosts of ZeuS bot in a managed network, where a host queries suspicious
domain names, based on the Domain Generation Algorithm (DGA), is con-
sidered a potential compromised host. In the case of proxied query via a
DNS forwarder, we looked at traffic information filtered by the IP address of
DNS answer records to identify the client IP address.

NTP amplifier detector
This module searches for Network Time Protocol (NTP) servers sending
traffic with a particular packet size corresponding to a well-known NTP-
amplification attack [75]. It reports the IP addresses of NTP amplifiers, and
the IP address and Autonomous System (AS) number of targeted victims.

An additional module for the detector extracts NTP flows at the back-
bone sampling traffic (i.e., sFlow records) and lists the top ten NTP flows
within a given time period.

Anomalous heavy-hitter detector
By using simple statistical tests, this modules detects IP addresses sending
or receiving an abnormally high number of packets or bytes, for example,
caused by DoS attacks.
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Phishing likelihood calculator
This module is an implementation of a previously proposed system [60],
which provides a binary detection whether a given URL points to a phishing
site or not. The module consists of dataset preparation by crawling contents
on pre-known phishing sites provided by PhishTank1, analyzed by machine
learning method with the help of Mahout. The dataset is updated every day
since phishing sites changes frequently.

DNS amplification detector
The module tries to detect anomalous DNS traffic, causing amplification
attack which fills the link capacity and makes denial of services. It looks
at two different datasets, backbone sFlow traffic records and a list of open
DNS resolver servers [79], and ranks top 10 speakers of DNS flow which
communicates with open resolvers in sFlow datasets.

UDP fragmentation
As realizing an additional way for cache poisoning attack on DNS server
based on IP fragmented packets [40], we started to observe how much traf-
fic employed fragmented packets in the backbone traffic. The script simply
extracts a record from sFlow dataset and implements a counter-based de-
tection approach.

DNS anomaly detection
This module tries to detect anomalies of DNS response packets by adapting
a machine learning method. Various statistical features such as IP addresses,
the country code of DNS server, Malware Domain List2, legitimate domain
list, and the AS number of the DNS server are used for the analysis.

SSL scan detector
This module extracts SSL/TLS scans sFlow traffic data, which frequently
happened right after the discovery of Heartbleed bug in OpenSSL library.
The module simply counts packets destined to a specific port number, and
containing the TCP SYN flag.

DNS failure graph analysis
This module tries to find suspicious non-existing domain names and IP ad-
dresses that might belong to botnets. The analysis is an implementation of
an existing method, DNS failure graphs [43], based on a clustering tech-
nique.

4.2.3 Summary

Table 4.1 summarizes all the implemented analysis modules that we have
come up with so far (almost for one year). Thanks to the pre-processed
data by import module of each dataset and uniform programmability of
MATATABI, multiple experiments have been conducted. Furthermore, the

1http://www.phishtank.com/
2http://www.malwaredomainlist.com/
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script are small and easy to implement, with most of the ranging from from
20 to 160 Lines of Code (LoC).
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Table 4.1: Analysis modules on MATATABI.

Name datasets frequency LoC (#lines) remark
ZeuS DGA
detector

DNS pcap,
netflow

daily 25 hadoop-pcap

UDP frag-
mentation
detector

sflow daily 48

Phishing
likelihood
calcula-
tor [60]

Phishing
URLs,

Phishing
content

1-shot – Mahout
(Random-

Forest)

NTP
amplifier
detector

netflow,
sflow

daily 143 pyhive,
Maxmind

GeoIP
DNS

amplifier
detector

sflow, open
resolver [79]

daily 37

Anomalous
heavy-hitter

detector

netflow,
sflow

daily 106 pyhive

DNS
anomaly
detection

DNS pcap,
whois,

malicious &
legitimate

domain lists

daily 57 hadoop-
pcap,

Mahout
(Random-

Forest)
SSL scan
detector

sflow 1-shot 36

DNS failure
graph

analysis [43]

DNS pcap daily 159 pyhive

www.necoma-project.eu 76 November 30, 2014



5
Conclusion

The wealth and diversity of datasets collected by the NECOMA project is
an invaluable asset enabling researchers to detect and monitor different
aspects of malicious activities. However, collecting large amounts of high
quality data, while itself an important success, does not translate directly
into knowledge of the malicous landscape or ability to react to new threats.
Achieving these crucial goals depends on the ability to extract interesting
information from the constant flows of raw data, while efficiently analyz-
ing these datasets is an ambitious challenge due to the volume, variety and
rate of change of the collected data. To tackle the challenge, this docu-
ment reports several analysis techniques to independently process NECOMA
datasets, as well as the cross-layer approaches that leverage the value of
existing correlations between multiple datasets of different kinds. The over-
whelming number of events extracted by the proposed analysis techniques
is then rated and classified to prioritize further operations.

The second challenge addressed by this document is automated rating
and classification of malicious events. This crucial task is particularly difficult
as it is usually dataset-specific, and the pertinent metrics depend on the use
case. Thereby, we proposed diverse rating metrics and techniques that are
tailored to different applications. In particular, the ratings will not only be
available to the external users of the NECOMA platform but also can be used
internally to prioritize information originating from different sources.

Detailed discussions and implementations of the proposed analysis and
rating techniques have shed light on several details of the NECOMA ar-
chitecture design and its current hadoop subsystem implementation. We
consequently updated the NECOMA initial architecture and achieved an im-
portant step towards our definitive architecture design. The outputs of this
deliverable also clarified future directions for the development of the re-
maining modules of the NECOMA platform.
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