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Abstract. Static binary code analysis and reverse engineering are cru-
cial operations for malware analysis, binary-level software protections,
debugging, and patching, among many other tasks. Faster binary code
analysis tools are necessary for tasks such as analyzing the multitude
of new malware samples gathered every day. Binary code disassembly is
a core functionality of such tools which has not received enough atten-
tion from a performance perspective. In this paper we introduce GPU-
Disasm, a GPU-based disassembly framework for x86 code that takes
advantage of graphics processors to achieve efficient large-scale analy-
sis of binary executables. We describe in detail various optimizations
and design decisions for achieving both inter-parallelism, to disassem-
ble multiple binaries in parallel, as well as intra-parallelism, to decode
multiple instructions of the same binary in parallel. The results of our
experimental evaluation in terms of performance and power consumption
demonstrate that GPU-Disasm is twice as fast than a CPU disassembler
for linear disassembly and 4.4 times faster for exhaustive disassembly,
with power consumption comparable to CPU-only implementations.

1 Introduction

Code disassemblers are typically used to translate byte code to assembly lan-
guage, as a first step in understanding the functionality of binaries when source
code is not available. Besides software debugging and reverse engineering, dis-
assemblers are widely used by security experts to analyze and understand the
behaviour of malicious programs [8,12], or to find software bugs and vulnerabili-
ties in closed-source applications. Moreover, code disassembly forms the basis of
various add-on software protection techniques, such as control-flow integrity [24]
and code randomization [16].

Most previous efforts in the area have primarily focused on improving the
accuracy of code disassembly [9,13,24]. Besides increasing the accuracy of code
disassembly, little work has been performed on improving the speed of the actual
disassembly process. As the number of binary programs that need to be analyzed
is growing rapidly, improving the performance of code disassembly is vital for



coping with the ever increasing demand. For instance, mobile application repos-
itories contain thousands of applications that have to be analyzed for malicious
activity [17]. To make matters worse, most of these applications are updated
quite frequently, resulting in large financial and time costs for binary analysis
workloads. At the same time, antivirus and security intelligence vendors need
to analyze a multitude of malware samples gathered every day from publicly
available malware scanning services and deployed malware scanners.

In this work, we focus on improving the performance of code disassembly
and propose to offload the disassembly process on graphics processing units
(GPUs). We have designed and implemented GPU-Disasm, a GPU-based dis-
assembly engine for x86 code that takes advantage of the hundreds of cores
and the high-speed memory interfaces that modern GPU architectures offer, to
achieve efficient large-scale analysis of binary executables. GPU-Disasm achieves
both inter-parallelism, by disassembling many different binaries in parallel, as
well as intra-parallelism, by decoding multiple instructions of the same binary
in parallel. We discuss in detail the challenges we faced for achieving high code
disassembly throughput.

GPU-Disasm can be the basis for building sophisticated analysis tools that
rely on instruction decoding and code disassembly. We chose to focus on the
x86 instruction set architecture for several reasons. First, x86 and x86-64 are
the most commonly used CISC architectures. Second, building a disassembler
for a CISC architecture poses more challenges compared to RISC, due to much
larger set of instructions and the complexity of the instruction decoding process.
Third, it is easier to apply the proposed GPU-based design decisions to a RISC
code disassembler than the other way around.

We have experimentally evaluated GPU-Disasm in terms of performance and
power consumption with a large set of Linux executables. The results of our eval-
uation demonstrate that GPU-Disasm is twice as fast compared to a CPU disas-
sembler for linear disassembly, and 4.4 times faster for exhaustive disassembly,
with power consumption comparable to CPU-only implementations.

In summary, the main contributions of this paper are:

1. We present the first (to our knowledge) GPU-based code disassembly frame-
work, aiming to improve the performance of the instruction decoding process.

2. We present techniques that exploit the GPU memory hierarchy for optimiz-
ing the read and write throughput of the decoding process. Such memory
optimizations can be applied in tools with similar memory I/O operations.

3. We evaluate and compare our GPU-based disassembly library with a CPU-
based approach in terms of performance, cost, and power consumption.

2 Background

2.1 General Purpose Computing on GPUs (GPGPU)

While GPUs are traditionally used for computer graphics, they can also be
used for general-purpose computation. Due to the massive parallelism they of-



fer, they can achieve significant performance boosts to certain types of computa-
tion. GPUs typically contain hundreds (or even thousands) of streaming cores,
organized in multiple stream multiprocessors (SM). GPU Threads are divided in
groups of 32, called warps, with each core hosting one warp. Each warp executes
the same block of code, meaning that the threads within a warp do not execute
independently, but all of them run the same instruction concurrently. Conse-
quently, code containing control flow statements that lead to different threads
following divergent execution paths, cannot fully utilize the available cores. When
some threads within a warp diverge, because a branch follows a different path
than the rest of them (branch divergence), they are stalled. Consequently, the
tasks that can truly benefit from the massively parallel execution of GPUs are
the ones that do not exhibit branch divergence. Among many domains, GPUs
have been used in scientific computing [2], cracking passwords [1], machine learn-
ing [5], and network traffic processing [20–22].

GPUs have a distinct memory model. Each multiprocessor has a set of 64K
registers, which are the fastest GPU memory component. Registers are assigned
to threads and are privately scoped. The scheduler is responsible for ensuring
that register values are saved and restored during context switches of threads.
Each multiprocessor has its own Level 1 (L1) cache and shared memory, which
are shared by all the threads running on it, and are part of the same physical
memory component. This allows for choosing at run time (before spawning the
GPU threads) how to distribute memory between cache and shared memory.
The L1 cache is organized in data cache lines of 128 bytes. Shared memory is
as fast as L1 cache but is programmable, which means that it can be statically
allocated and used in GPGPU programs.

GPUs also include global memory, which is equivalent to the host’s RAM.
It is the slowest memory interface, but has the largest capacity. Global memory
is available to all SMs and data from the host to the device and vice versa can
be transfered only through this part of memory. Interestingly, global memory
also hosts local memory, which is used by threads to spill data when they run
out of registers or shared memory. Finally, global memory also includes constant
memory, a region where programs can keep read-only data, allowing for fast
access when threads use the same location repeatedly.

A Level 2 (L2) cache is shared between all SMs and has a larger capacity
than L1. Every read/write from and to the global memory passes through the
L2 cache. A GPU multiprocessor can fetch 128 byte lines. The driver keeps this
alignment in global memory and in cache lines to achieve increased through-
put for read and write operations. The maximum transfer throughput to global
memory is 180 GB/s.

There are two frameworks commonly used to program GPUs for general
purpose computations, both using C API extensions. The first is CUDA [14],
a programming framework developed by NVIDIA (which we use in this work),
and the second is OpenCl [19], which is a generic framework for programming
co-processors with general purpose computational capabilities.



Fig. 1: x86 Instruction format.

2.2 x86 architecture

The x86 and x86-64 architectures are probably the most widely used CISC (Com-
plex Instruction-Set Computing) architectures [7]. Their instruction sets are rich
and complex, and most importantly they support instructions of varying length.
Instruction lengths range from just one byte (i.e., instructions comprising just
an opcode) to 15 bytes. Generally, instructions consist of optional prefix bytes,
which extend the functionality of the instruction, the opcode, which defines the
instruction, the ModR/M and SIB bytes, which describe the operands, followed
by an immediate value, that is also optional. The overall format of an x86 in-
struction is depicted in Figure 1.

Due to the extensive instruction set and the variable size if its instructions,
it is very easy for disassemblers to be confused, decoding arbitrary bytes as in-
structions [3], e.g., because data may be interleaved with instructions, or because
the beginning of a block of instructions is not correctly identified.

2.3 Code Disassemblers

There are two widely used code disassembly techniques, linear and recursive
disassembly [6]. In linear disassembly, a segment of bytes is disassembled by
decoding instructions from the beginning of the of the segment until the end
is reached. Linear disassembly typically does not apply any heuristics to dis-
tinguish between code and data, and consequently, it is easy to get “confused”
and produce erroneous results. For example, compilers emit data and patching
bytes for function alignment, which a linear disassembler decodes as instructions,
along with the actual code. Thus, when disassembling the whole text segment
of a binary, the output of linear disassembly is likely to contain erroneous parts
that correspond to embedded data and alignment byte Binaries may also con-
tain unreachable functions that are included during compilation, e.g., due to the
static linkage of libraries, which will also be included in the output of linear
disassembly.

Recursive disassemblers use a different approach that eliminates the erro-
neous assembly produced by linear disassembly, but with its own disadvantages.
The decoding process starts from an address out of a set of entry points (exported
functions, entry points) and linearly disassembles the byte code. Whenever the
disassembler encounters control flow instructions, it adds all targets to the set of
entry points. The disassembly process stops when it finds indirect (computed)



branches which cannot be followed statically. The process continues recursively
by decoding from a new target out of the set of entry points. They main draw-
back of recursive disassembly is that it cannot reach code segments that are
accessible only through indirect control flow transfer instructions.

3 Architecture

In this section, we describe the overall architecture of our system. Our aim
is to design a GPU-based disassembly engine that is able to process a large
number of binaries in parallel. The key factors for achieving good performance
are: (i) exploit the massively parallel computation features of the GPU, (ii)
optimize PCIe transfers and pipeline all components for keeping the hardware
utilized at all times, and (iii) design optimization heuristics for exploiting further
capabilities of the hardware.

The basic operations of our approach include: (i) Pre-processing : loading of
the binaries from disk to properly aligned buffers of the host’s memory space,
(ii) Host-to-device: transfer of the input data buffers to the memory space of the
GPU, (iii) Disassembly : the actual parallel code disassembly of the inputs on
the GPU, and storage of the decoded instructions into pre-allocated output data
buffers, (iv) Device-to-host : transfer of the output buffers to the host’s memory
space, and finally (v) Post-processing : delivery of the disassembled output and
initialization of the pointers to the next chunk of bytes of each binary, if any,
that will be fed to the GPU for disassembly. Once processing of all binaries has
completed, input buffers are loaded with the next binaries to be analyzed.

3.1 Transferring Input Binaries to the GPU

The operation to consider is how input binary files will be transferred from
the host to the memory space of the GPU. The simplest approach would be to
transfer each binary file directly to the GPU for processing. However, due to the
overhead associated with data transfer operations to and from the GPU, group-
ing many small transfers into a larger one achieves much better performance
than performing each transfer separately. Thus, we have chosen to copy the bi-
nary files to the GPU in batches. In addition, the input file buffer is allocated
as a special type of memory, called page-locked or “pinned down” memory, in
order to prevent it from being swapped out to secondary storage. The copy from
page-locked memory to the GPU is performed using DMA, without occupying
the CPU. This allows for higher data transfer throughput compared to the use
of pageable memory, e.g., using traditional memory allocation functions such as
malloc().

3.2 Disassembling x86 Code on the GPU

Instruction Decoding and Linear Disassembly. Linear disassembly blindly
decodes a given sequence of bytes from the beginning to the end without ap-
plying any further heuristics or logic. Initially, the GPU decoder dispatches the



instruction prefixes (if present), which always come before the opcode of x86
instructions. Afterwards, the decoder dispatches the next byte of the instruction
which is the actual opcode we are interested in. The decoder shifts the opcode
bytes to bring them in a form that it can easily use them as an index for a
look-up table. After decoding the opcode, we determine if the instruction has
operands or not, by decoding the ModR/M byte. The operands can be registers
or immediate values. If the operands are registers, they can be either implicit,
as part of the instruction, or explicit, defined by the following bytes. If the in-
struction uses indexed addressing, then the next decoded byte corresponds to
the SIB (Scale Index Base) which determines the addressing mode of the array.
Lastly, the disassembler decodes the displacement and immediate bytes.

The disassembly process can fail while decoding an instruction. Depending
on the failure reason, the disassembler handles it in a different way. When more
bytes than available are expected based on the last decoded opcode, the instruc-
tion decoding process stops and an appropriate error is reported. When invalid
instructions are encountered, the disassembler marks them and continues the
decoding process from the following byte.

Each GPU thread is assigned to disassemble a single chunk of an input binary
at a time. Consequently, the total GPU kernel execution time is equal to the
time of the slowest (last finished) thread. Note that the overall performance
would drop in case some threads remained under-utilized, i.e., they were assigned
smaller workloads. To avoid this, we assign fixed-sized input buffers (chunks) to
all threads, which minimizes the possibility of having idle threads. However, as all
input binaries do not have the same size, some imbalance unavoidably happens
as the processing of smaller input files completes. Our current prototype does
not handle such imbalances, but their effect can be minimized by selecting input
file batches based on file sizes, so that each batch includes files of similar sizes.

Having fixed size chunks leads to more complex data splitting, when a bi-
nary may not fit inside the buffer all at once. Therefore, we have to divide the
binary in several chunks and perform the disassembly process on batches. Due
to the nature of the x86 instruction set (Section 2.2) we have to carefully choose
the starting point of the next chunk of bytes for decoding, otherwise any split
instructions will generate incorrect disassembly.

Exhaustive Disassembly. We have also implemented an exhaustive disassem-
bly mode, which applies linear disassembly by starting from each and every byte
of the input, i.e., by decoding all possible (valid) instructions contained in the
input. Further analysis of the output can be then performed to identify function
boarders, basic blocks, and even obfuscated code constructs. For instance, Bao
et al. [4] use exhaustive disassembly to generate all possible outputs, and then
apply machine learning techniques to find instruction sequences that correspond
to function entry and exit points. Other approaches [8,13] disassemble the same
regions of a binary from different indexes and apply heuristics to identify basic
blocks and reconstruct the the control flow graph.



For exhaustive disassembly, we transfer the input buffer to the GPU memory
space and spawn as many threads as the bytes of the binary. Each thread starts
the decoding of the same input from a different index. Although each thread
decodes only one instruction, this approach is effective in quickly extracting all
possible instructions contained in the input.

3.3 Transferring the Results to the Host

After an instruction is decoded, the corresponding data is stored in the GPU
memory. As storing extensive data for all decoded instructions from all threads
can easily deplete the memory capacity, we chose to save only basic information
about each decoded instruction, which though is enough for further analysis.
Specifically, we store the relative address of the instruction within the input file,
its opcode, the group to which it belongs (e.g., indirect control flow transfer,
arithmetic operation, and so on), and all explicit operands such as registers
and immediate values. The above extracted information can fully describe each
decoded instruction, and can be easily used for further static analysis, compared
to more verbose storing of raw fields, such as ModR/M bits. Information such
as implicit operands and the size of the instruction mnemonic can be easily
extracted from the stored metadata. For example, the size of the instruction can
be calculated from the distance between the relative addresses of the current
and the next instruction.

The decoded instructions are stored in a pre-allocated array with enough
space for all instructions of the input. As shown in Figure 4 (discussed in more
detail in Section 5.1), only less than 20% of the encountered instructions on
average are a single-byte long, so the number of decoded instructions in typically
much smaller than the size of the input in bytes. Consequently, we safely set the
number of slots in the array as half the size of the input buffer in bytes.

The GPU disassembly engine saves the decoded instructions on GPU memory
and transfers them back to the host for further analysis. After the device to host
transfer has completed, the system evaluates the extracted information as part of
a post-process phase. This includes checks for errors due to any misconfiguration
of the GPU threads, and for each thread, whether there are pending bytes for
disassembly for the current input binary being processed. Then, the pointer for
the next chunk to be processed is set according to the last successfully decoded
instruction, so that the disassembly process is not corrupted. If a thread has
finished disassembling an input binary, the pointer is set to NULL so that a new
binary will be assigned to it, after the processing of the whole batch is completed.

3.4 Pipeline

After optimizing the basic operations, we have to design the overall architecture
in such a way that will keep every hardware component utilized. The GPGPU
API supports running computations using streams. Thus, we can parallelize data
transfers with the disassembly process and eliminate idle time for the PCIe bus
and the GPU multiprocessors. We use double buffers for both input and output,



so that when the GPU processes a buffer, the system can transfer the output
data and fill the next input buffers with new binaries for disassembly. With the
proper usage of streams, we can keep the CPU, the PCIe bus, and the GPU
utilized concurrently at all times.

The GPU can handle the synchronization of GPU operations internally. How-
ever, before the host proceeds with output analysis, it needs to synchronize the
GPU operations. The host is unable to know if the device has finished process-
ing until the driver receives a signal from the GPU that denotes completion.
Ideally, we would like to keep the GPU utilized without blocking for synchro-
nization. The architecture can be designed so that synchronization is kept to a
minimum, just for one of the operations. By placing all input values (binaries,
sizes, memory addresses) and all output data into a single buffer, as described
above, requires invoking the synchronization process only after the copy of the
output from device to host, eliminating in this way any intermediate serialization
points.

4 Optimizations

4.1 Access to Global Memory

Due to the linear nature of the disassembly process, we enforce both reads and
writes to the input and output buffers to be performed only once for each decoded
instruction. As mentioned, the instruction sizes of the x86 ISA vary significantly,
ranging between 1 and 15 bytes. According to the alignment property that GPUs
follow for the memory accesses, different sequences of instructions with differ-
ent sizes may result in misaligned accesses, consequently resulting in degraded
memory access throughput.

We describe the improvement of the reading process in Section 4.3. Regarding
the improving the write throughput of the disassembly output to global mem-
ory, GPU best practices [15] propose that data structures on the GPU should be
placed as structs of arrays. In most cases, this results in improved data through-
put from global memory. However, in our case we observed lower performance
due to the drop of the writing throughput back to global memory. We tackled
this issue and achieved a better throughput by having a struct with the decoded
information per instruction, instead of separate arrays for each field.

4.2 Constant Memory

A crucial part of the disassembler are the look-up tables with the decoding
information that are hardcoded in the instruction decoder. These tables are
used as dispatchers for the decoding process. They hold information about each
instruction, such as the opcode, whether there are operands and how many to
expect, the type of the instruction, the group of the architecture extension of
an instruction, and so on. The look-up tables are constants and shared through
all threads. Therefore, we can use the constant memory of the GPU in order



to have fast access to these tables. The constant memory though is limited in
size, and the look-up tables can easily exceed the available memory. To strike a
balance between performance and accuracy, we measured the most used tables
and placed them to the GPU constant memory, and kept the more rarely used
tables in the (slower) global device memory. Furthermore, global variables such
as function pointers that are being assigned by the initialization process, are
placed to the shared memory of each multiprocessor, which can be initialized at
run time.

4.3 Access to L2 Cache

Read and write data accesses pass through the L2 cache, which is a shared mem-
ory interface for all multiprocessors as the global memory. The L2 cache memory
is n-associative [23], which means that data lines are placed depending on the
least significant bits of the accessed address. When assigning large input buffers
to each thread, memory divergence increases, and consequently, line collisions
inside the L2 cache occur more frequently as well. On the other hand, having
small input buffers will result in under-utilization of the GPU threads, and an
overall drop in performance.

Taking in consideration this trade-off, we sought a solution that combines
the benefits of both approaches. Each read access to the global memory from a
multiprocessor fetches a 128-byte line of data. Consequently, we chose to divide
large buffers into smaller ones (as shown in Figure 2) with a size aligned to the
access line of the GPU, and place them within the larger buffer in such a way
that threads access the buffer as a group. We evaluated buffer sizes of 16, 32 and
64 bytes, and the results of our experiments showed that beyond 32 bytes, the L2
hit ratio from the L1 cache dropped due to line collisions (Table 1). For every 32
bytes of the input buffer, we place in the first 16 bytes the previous 16 decoded
bytes, and in the following 16 bytes the new bytes that have to be decoded.
The repeated bytes are needed for correcting the decoding alignment, in case
of out-of-bounds errors of a previous disassembly. In that case, we continue the
decoding process from the byte where the previous disassembly stopped at, until
the end of the 32 bytes. Furthermore, this optimization forces the disassembler
to make fixed read accesses to global memory, which achieves better throughput.

4.4 Data in GPU Registers

We take advantage of the GPU registers to store statically allocated data that is
frequently used by the decoder. Typically, instruction operands are dynamically
allocated for each instruction, due to the fact that the number of operands am
x86 instruction uses is not known in advance. We changed the list of operands
to a static array, which eventually the compiler keeps in registers. As mentioned
earlier, operands may be either explicit or implicit. Due to memory capacity
limitations, we decided to keep in registers only the explicit operands (three or
less). Implicit operands depend on the instruction opcode, and therefore can be
easily inferred.



Fig. 2: Reading inputs from GPU global memory with L2 cache optimization.

Keeping operands into registers instead of shared memory is preferable be-
cause the latter would affect the L1 cache of each multiprocessor, which corre-
sponds to the same hardware, and therefore would drop the read access through-
put of the input binaries. Also, the shared memory would have to be divided
according to the number of threads for each multiprocessor, imposing an upper-
bound on the number of threads that could be spawn due to the size of temporary
list of operands for each thread.

Another use of registers is related to improving the read throughput of the
input buffers. Traditionally, read requests pass from global memory through the
L2 cache, and finally the data are fetched to the L1 cache of the corresponding
multiprocessor. In order to avoid reading from the L1 cache, or even worse to
overwrite the cache line where decoded bytes are stored, we save the 32 byte lines
into a uint4 t statically declared array, which is translated at compile time in
register storage. Although excessive use of registers can result in register spilling
to local memory, any incurred latencies can be hidden by spawning more threads.
Our experiments show that stall instructions due to local data accesses are rare.

5 Evaluation

In order to evaluate our GPU-based disassembler, we create a corpus of 32,768
binaries from the /usr/bin/ directory of a vanilla Ubuntu 12.04 installation,
allowing duplicates to reach the desired set size. The sizes of the binaries vary
between 30 KB and 40 KB. Our testbed consists of a PC equipped with an Intel
i7-3770 CPU at 3.40GHz and 8 GB of RAM, and an NVIDIA GeForce GTX 770
GPU with 1536 cores and 4 GB of memory.
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5.1 Performance analysis

The performance evaluation examines both the system as a whole, as well as
its sub-parts (e.g., the decoding engine and data transfers). We also test exist-
ing CPU-only disassemblers for comparison. We report the throughput of the
disassembly process as the number of assembly lines (or decoded instructions)
produced per second. As the size of instructions in x86 ISA varies, it would be
misleading to measure the number of bytes processed per time.

Performance analysis of open-source disassemblers As a first step, we
evaluate several popular open-source linear disassemblers to estimate the through-
put of conventional CPU-based disassemblers. In order to eliminate any I/O
overhead, we redirect the output of the tools to /dev/null. Figure 3 depicts the
average disassembly rate for various disassemblers in thousands of assembly lines
(KLines) per second, when utilizing a single CPU thread. The faster disassem-
bler is Udis86, which achieves a throughput of 2142.2 KLines/sec and the slower
is the objdump utility, which processes 423.664 KLines/sec. The differences in
throughput are mostly due to the data produced for disassembled instruction;
the more information generated by a disassembler, the lower its throughput. For
instance, some tools record only the opcodes and the corresponding operands for
each instruction, while others include information such as its instruction group,
relative virtual addresses, etc.

Data Transfer costs In this experiment, we measure the data transfer rate
between CPU and GPU over PCIe for different block sizes of data. Figure 5
shows the results in GB/sec including standard error bars for transferring data
from host to GPU memory and vice versa. The maximum theoretical transport
bandwidth for PCIe 3.0 is 16 GB/s, however, in this experiment the maximum
achieved rate is 12 GB/s, when transferring blocks of 16 MB.

GPU Instruction-Decoding Performance In this section, we evaluate the
decoding performance of the GPU, excluding any data transfers, and pre- and
post-processing occurring on the CPU (e.g., opening files and preparing data
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exchanges). In this experiment, we use three different inputs: (i) linear disas-
sembly of synthetic binaries, (ii) linear disassembly of binaries corpus, and (iii)
exhaustive disassembly of a subset of the corpus.

Cache Hit Rate in L2
Buffer optimized size Average Hit Rate %

16 Bytes 58.70
32 Bytes 53.65
64 Bytes 45.26

Table 1: Average hit rate at L2 cache for all read requests from L1 cache, when decoding 2-byte
instructions in the GPU.

Optimization MLines/Sec. performance
Gained %

No Optimization 52.05 -
Improve Cache Hits 65.51 +25.85 %
Structs of Arrays 43.85 -15.75 %

Table 2: Impact of Access To Global optimizations, when decoding 2-byte instructions in the GPU.

Instruction
Size

MLines/Sec. CPU Performance
Dropped CPU
%

MLines/Sec. GPU Performance
Dropped GPU
%

1 35.90 - 100.91 -
2 14.12 60.6 66.67 33.93
4 12.63 64.81 59.53 41.00
8 9.96 72.25 46.32 54.09

Table 3: Effect of instruction sizes in decoding.

Synthetic Binaries In this experiment, we aim to evaluate our various optimiza-
tions and the effect of instruction-size. First, we generate buffers including 2-byte
instructions, which is the most common instruction length (about 38.54% in our
dataset, see Fig. 4), and measure how the buffer size used in decoding affects
the L2 cache hit rate, when using 4096 threads. Table 1 shows that the optimal
buffer size is 16 bytes. Table 2 shows the performance gained in accessing global
memory by each of the optimizations described in Sec. 4.



Exhaustive Disassemble Results

Description Speedup

Average 4.411

Standard Deviation 0.928

Maximum 7.122

Minimum 2.729

Table 4: Exhaustive disassembly of 101 binaries
from the corpus. GPU speedup results compared
to the CPU. (Includes only instruction decoding.)

Threads Performance MLines/sec
512 3.096
1024 4.857
2048 9.335
4096 17.548
8192 28.053
16384 28.085

CPU performance: 13.933

Table 5: End-to-end disassembly of binaries co-
prus. Overall Performance in MLines/sec. (Data
transfer buffer is 8192 Bytes)

As mentioned in section 2.2, the size of an x86 instruction can be between
1-15 bytes. Figure 4 shows the cumulative distribution function (CDF) of in-
struction sizes in the binaries used in the evaluation. In order to understand
how binaries containing a mix of instructions with different sizes will affect per-
formance, we decode files containing instructions with different sizes, with each
file containing only a single length of instructions. We also compare decoding
throughput by running our decoder both on the CPU and GPU, and try differ-
ent numbers of threads on the GPU. We again use 4096 threads in the GPU, as
we found that is is optimal in the synthetic binaries scenario. Table 3 lists the
results of this experiment.

Linear Disassembly of Binaries In this experiment, we evaluate the GPU per-
formance on disassembling the binaries in our corpus. This is likely to be the
common use case of our prototype on large scale binary analysis. Each thread is
assigned a different binary for disassembling. In Figure 6, we plot the speedup
gained when offloading the disassembling process to the GPU. We evaluate sev-
eral configurations, i.e., bytes per thread and number of threads, in order to
find the best configuration. We can see that the GPU reaches maximum perfor-
mance on different number of threads (8192) than with the synthetic binaries
(4096). We also observe that the performance on different binaries drops to 28.4
MLines/sec compared to decoding all 8-byte instructions in the GPU (46.32
MLines/sec). This performance loss happens due to the different memory stalls
that occur to each thread at a given moment. Threads decode different sizes of
instructions when disassembling binaries, as a consequence they do misaligned
accesses to the global memory and the cache misses increase. Still, by increasing
the threads per multiprocessor we can hide some of these stalls and therefore
the disassembler scales up to 8,192 threads. From the other hand, just spawning
threads is not enough for hiding all the stalls. Spawning more threads arises more
races to the caches and more cache misses for the concurrent cache lines. Lastly,
by decoding different instructions, we slightly increase the branch divergence
that also creates stalls. As we can see in Figure 6 the GPU was ≈ 2 times faster
on the disassembly process than a relevant high-end CPU. Performance stops
scaling after 8192 threads which we can safely state that this is the optimum
configuration for the disassembly process.



Exhaustive Disassembly of Binaries In this experiment we disassemble each bi-
nary starting from each byte in order to find all possible instructions included
in the binary. The evaluated prototype is the one described in Section 3.2. We
evaluate the prototype using several number of threads in order to find the op-
timal for this case. The best performance is reached when we spawn 131,072
threads. Therefore, the exhaustive prototype, shall perform better, if we disas-
semble binaries of size bigger than the threads we spawn. In case the binary is
smaller than the optimal amount of threads we spawn as many threads as the
size of the binary. As we saw the disassemble performance differs among different
sizes of instructions. In order to be accurate, we exhaustive disassemble a set of
101 binaries and evaluate the achieved performance. In Table 4 we can see the
results of the experiment described, on disassembling binaries exhaustively. The
average speedup we gained is 4.411 with a standard deviation of 0.928.

Overall Performance In this section, we evaluate our prototype in an end-to-
end scenario. As mentioned in Section 3, we use streams in order to pipeline the
operations and hide communication costs. We measure the time spent for each
component in isolation. For all subsequent experiments with use 8,192 threads,
as this configuration achieves the best performance, as we have shown in Sec-
tion 5.1. In Figure 7 we can see the raw times of the corresponding components
stacked in the order they execute in a given stream, pipelined with the current
disassembly process of the previous stream. When the number of threads is lower
than 1024 we can see that the bottleneck operation is pre-processing. However,
after 1024 bytes per thread we can see that the disassembly component becomes
the bottleneck of the whole process. Therefore, pipelining does not reduce per-
formance. In Table 5 we demonstrate the raw performance in MLines/sec of the
GPU in several threads with the size of the input buffer at 8192 bytes per thread.

Hybrid Model: We also evaluate the performance of utilizing all CPU cores and
the GPU to massively disassemble binaries. Despite the fact that the GPU is
an independent processing system, it still requires interaction with the CPU for
transferring data, spawning the GPU kernel for execution, etc. Therefore, when
we over-utilize the CPU with workload, we increase the probability of having
threads stalled due to context switching. At the evaluation process, by overload-
ing the CPU we experience an increase in the pre- and post-processing overhead
and so, we wasted time by having idle the GPU and decrease the overall per-
formance. In order to evaluate properly the hybrid model we assigned one CPU
thread to the GPU processes (pre, post, GPU invocation and interaction) and
the rest for disassembly on the CPU. In Figure 8 we can see the performance on
different devices and the hybrid model as described. The hybrid model achieved
the performance of 37.336 MLines/sec which is 2.67 times faster than having
only the CPU utilized and 1.32 times faster than the GPU implementation. The
divergence of the hybrid model from the ideal performance is due to the assigned
thread to the GPU controlling processes.
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5.2 Power Consumption and Cost

Power Consumption per line In this experiment we measure the power con-
sumption of our prototype at a given moment, with the components pipelined,
when disassembling binaries. For the comparison we define the metric Joules con-
sumed per decoded line. We evaluate the watts consuming per second and the
performance of the tool as defined in previous sections (Lines/sec). By dividing
these values we come up with Joules consumed per decoded line (Joules/line).
In Figure 9 we demonstrate the power consumption efficiency for the GPU and
CPU in different threads. For the measurement of the power consumption we
used sensors that can measure the power consumption of the CPU, the PCI bus,
the RAM and peripherals. For each set up, we sum up the power consumed at a
given moment and then we calculate the power consumed per decode line. Both
of the devices perform similar in terms of power consumption per decoded line.
GPU consumes 8.34 µJ at the best configuration for decoding an instruction.

Lines per Dollar For our hardware setup, we have selected relatively high-end
devices; for the CPU we used an Intel(R) i7-3770 which costs around $305, and
the NVIDIA GTX 770 graphics card with similar cost at $396.4 5 These are

4 Cpu benchmarks: Intel core i7-3770 @ 3.40ghz. http://www.cpubenchmark.net/
5 Videocard benchmarks: Geforce gtx 770. http://www.videocardbenchmark.net/

http://www.cpubenchmark.net/
http://www.videocardbenchmark.net/


the prices at the time this work was published. The total system cost is around
$1120 with the current values of the components. Our prototype performs with
an overall cost of 23.36 KLines/$.

6 Related Work

The improvement of the disassembly process for the x86 and x86-64 architecture
is still an open issue. There are various publications that address disassembly
correctness and effectively differentiate code from alignment patching bytes in-
side the text section of the binaries. Most of these publications, are based on a
similar approach. They use the targets of control-flow instructions in order to
recognize the regions of basic blocks and functions borders. They make several
disassembly passes on these code regions until the given conditions of correct-
ness are satisfied. Finally, they construct the final call graph and discard the
unreachable regions [9, 13, 18, 24]. However, there is also a dynamic approach
that leverages machine learning techniques [4, 11]. This approach uses decision
trees, that are constructed by feeding binaries, compiled from various compilers
and optimization flags as training sets. They perform exhaustive disassembly
on the binary to produce all the possible assembly output. Lastly, they use the
constructed tree to match and recognize the entry and exit points of functions.

GPUs continuously become more powerful and with extended computational
capabilities that can support more applications. In the scientific community,
there are several security analysis tools that exploit the parallelism offered by
GPUs for fast processing such as network packet processing [10,20,21].

7 Limitations

The implementation of our prototype comes with limitations. The size of the
decoded instructions for all the threads can be enormous and as a result, we can
easily run out of memory. Also, memory constrains occur on the fast memory
interfaces such as constant memory, shared and register usage per thread. Fur-
thermore, GPU limitations with regards to dynamic memory allocation, forces
us to use static allocation and requires rewriting of the dynamic parts of the
disassembler.

We are unable to further exploit GPU parallelization due to memory stalls
that occur at decoding time. GPU threads, make arbitrary accesses to memory
at the decoding process which under-utilize the access throughput. Although,
we can hide memory stalls by spawning more threads, there is a limit on how
the cuda-process scales. The GPU hides stalled threads by context-switching to
threads that are ready to execute. However, complex programs, that have high
needs in resources and frequently access memory, can generate more stalls when
excessively utilizing threads. Thus, it is not trivial to determine the optimal num-
ber of threads for a GPU-Disassembler; it really depends on the implementation
and the disassembly algorithm (linear, exhaustive, etc.).



8 Conclusion

GPUs are powerful co-processors, which we can use to accelerate computationally
intensive tasks like binary disassembly through parallelization. In this work we
have built a GPU based x86-disassembler that exploits the hardware features
offered from GPUs to accelerate disassembly. We evaluate our GPU-based x86-
disassembler in terms of performance and cost. Our prototype performs two
times faster in linear disassembly and 4.4x faster in exhaustive disassembling of
the same binary compared to a CPU implementation. In terms of performance
over power consumption; GPU performs similar with a full utilized CPU at 8.34
µJ/Line.
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