Detecting Anomalies in Massive Traffic
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Motivation and Challenge

» Detecting network anomalies is crucial
» Attacks, spreading of worms, outages

» Limitations of signature-based anomaly detectors
» Need up-to-date attack signatures
» Cannot detect unknown and new attacks

» Internet traffic data is exponentially growing and new attacks are constantly invented
> Traffic analyzers that do not require prior knowledge as well as can handle the higher data rate are needed

Proposed Three Steps to detect Anomalies in Massive Traffic
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> Split traffic into several sub-stream by hash ased on S-transtorm: | » Find the keys (e.g., source IP) in the
functions as shown in Fig. 1 » S-transform converts the entropy to time- detected suspect time-bins

> Compute Entropy of each sub-stream. frequency domain as shown in Fig. 2

» Find changes in the time-frequency domain

Entropy is defined as H(X) = —).'_,pilog.p;
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Fig. 1 Traffic summarization Fig. 2 Frequency extraction by S-transform

Evaluations with Real-world Backbone Traffic Collected at the 150 Mbps US-JP Link
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Fig. 3 Accuracy rate of detecting anomalous source IP, destination IP, source port, Fig. 4 False positive rate of detecting anomalous source IP, destination IP, source port,
and destination port in traces collected on January 2010 and destination port in traces collected on January 2010

» Evaluation Dataset: 30 backbone traffic traces from MAWI dataset [1] collected on January 2010 (~ 500,000 distinct IP/trace)
» Results: above 60% accuracy and 3-12% false positive rates (on average)
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1 Accuracy rate is computed by the number of anomalies that were correctly detected by our algorithm divided by the total number of anomalies that were detected by MAWILab [2]

2 False positive rate is the total number of normal instances that were incorrectly detected as anomalies by our algorithm divided by the total number of normal instances in the trace.



