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ABSTRACT

Internet traffic monitoring is a crucial task for network security. Self-

similarity, a key property for a relevant description of internet traf-

fic statistics, has already been massively and successfully involved

in anomaly detection. Self-similar analysis was however so far ap-

plied either to byte or Packet count time series independently, while

both signals are jointly collected and technically deeply related. The

present contribution elaborates on a recently proposed multivariate

self-similar model, Operator fractional Brownian Motion (OfBm), to

analyze jointly self-similarity in bytes and packets. A non-linear re-

gression procedure, based on an original Branch & Bound resolution

procedure, is devised for the full identification of bivariate OfBm.

The estimation performance is assessed by means of Monte Carlo

simulations. Further, an Internet traffic anomaly detection procedure

is proposed, that makes use of the vector of Hurst exponents under-

lying the OfBm based Internet data modeling. Applied to a large

set of high quality and modern Internet data from the MAWI repos-

itory, proof-of-concept results in anomaly detection are detailed and

discussed.

Index Terms— Internet traffic, anomaly detection, bivariate

self-similarity, non linear regression, branch and bound.

1. INTRODUCTION

Internet traffic monitoring. Internet traffic monitoring and mod-

eling constitute crucial tasks for network engineering and design,

resource allocation, performance and service optimization, and for

security assessment. Notably, anomalous traffic detection has re-

ceived a considerable amount of attention and research efforts, as

malicious traffic may have dramatic consequences both for users and

operators. Anomaly detection in Internet traffic context is however

highly challenging, because of the strongly heterogeneous natures

of networks, applications, protocols and user behaviors. Normal or

legit traffics may per se show a large diversity, whose actual def-

inition hence remains a difficult issue. Anomalous behaviors may

correspond to an even larger level of heterogeneity, from the known

Distributed Denial of Service (DDoS) and port scanning to the po-

tential occurrence of behaviors never encountered before, cf. e.g.,

[1, 2, 3] for reviews. In addition, the nature of the available data may

depend on the network or on the operator, consisting either of sys-

tematic IP (Internet Protocol) packet timestamps, volume in bytes,

and 5-tuples1 or of higher granularity recordings (applications, pro-

tocol,. . . ). The present work analyzes times series consisting of the

counts of IP Pkt YPkt,∆(t) (or of bytes YByt,∆(t)) in consecutive

time bins, of size ∆, obtainable from packet header traces only.

Related works: anomaly detection. The literature dedicated to

anomaly detection in Internet traffic is huge (cf. e.g., [1, 2, 3, 4, 5]

for reviews) and an exhaustive description is out of the present scope.

The focus here is on anomaly detection based on aggregated time

series, thus respecting privacy, as opposed to techniques that rely on

packet payload examination. Because of the ever changing nature

of Internet traffic, extracting a reference for normal traffic against

which anomalies could be compared is an almost impossible task.

Instead, random projection tools, also referred to as hashing pro-

cedures or sketching, were used for the automated construction of

self-referenced traffic [6] and [4, 7]. Often, anomaly detection re-

lies on the statistical modeling of regular traffic. Amongst numerous

attempts, self-similarity and fractional Brownian motion (fBm) [8]

have been shown to provide relevant and robust models for Inter-

net traffic statistics across a large variety of networks, traffics and

from the early ages of Internet to the most recent data collections

[9, 10, 11, 12, 13]. In essence, self-similarity implies that Internet

traffic temporal dynamics are not driven by specific and characteris-

tic time scales, but rather involve a large continuum of time scales,

whose relation is quantified by the so-called Hurst parameter H , of-

ten empirically found in H ∈ (0.8, 1). So far, however, in most

anomaly detection procedures relying on self-similarity, analysis and

modeling remained univariate: Byte and Pkt aggregated count time

series were analyzed independently, cf. [9, 12, 4, 7, 14]. It is even of-

ten much debated and controversial to decide whether self-similarity

analysis should be conducted on byte-counts or packet-counts time

series. Often, parameters H measured on each type of data dif-

fer, thus calling into question the validity of the celebrated queu-

ing mechanism that relates self-similarity to the heavy tailed nature

of the distributions of the objects to be distributed on the Internet

(cf. e.g., [15, 16, 17]) or raising questions such as: Do the mech-

anisms apply to packet, bytes, both? if so, why should H differ

between packet and bytes? To address such issues, the joint avail-

ability of Pkt and Byte count time series has rarely been exploited

in bivariate self-similarity analysis, see a contrario [18] and [7] for a

1The standard 5-tuple consists of five IP packet header fields: IP address
and port number for source and destination, and IP protocol carried (TCP,
UDP or ICMP).



preliminary comparisons of self-similarity exponents computed in-

dependently on YPkt,∆(t) and YByt,∆(t).
Goals, contributions and outline. The present contribution makes

use of a recently proposed multivariate self-similar model, Operator

Fractional Brownian motion (OfBm) [19, 20], to model joint self-

similarity of bytes and packets as well as to construct an anomaly de-

tection procedure that exploits OfBm parameters. The definition of

OfBm is detailed in Section 2, and complemented with the study of

its wavelet analysis, that incorporates an original tunable fractional

integration parameter that permits coping with the specific nature

of Internet data. Another specificity of the present work consists in

formulating the estimation of the full set of OfBm parameters as a

non linear regression (cf. Section 3). In addition, an original Branch

& Bound procedure is devised to minimize the corresponding func-

tional. The estimation performance is assessed by means of Monte

Carlo simulations conducted on synthetic OfBm, that mimic Internet

data properties. An anomaly detection procedure is then constructed

on OfBm parameters estimated from bytes and packets time series,

and applied to a large set of high quality and recent Internet data,

from the MAWI repository [21], described in Section 4. Results are

discussed in Section 5.

2. BIVARIATE OFBM AND WAVELET ANALYSIS

Definitions. The general definitions of OfBm can be found in [22,

20] as the only multivariate Gaussian self-similar process with sta-

tionary increments. The definitions here are restricted to the class

of bivariate time-reversible OfBm {Y (t) = (Y1(t), Y2(t))}t∈R. Let

{X(t) = (X1(t), X2(t))}t∈R denote 2 fBms, with auto and cross-

covariance functions written as: EXp(t)Xp′(s) =

ΣX (p, p′)/2(|t|Hp+Hp′ + |s|Hp+Hp′ − |t− s|Hp+Hp′ ), (1)

with (p, p′) ∈ {1, 2}2, with 0 < H1 ≤ H2 < 1, and where ΣX ≡
EX(1)X∗(1).

Process X is well defined if and only if [23, 19]:

g(H1,H2, ρx) ≡ Γ(2H1 + 1)Γ(2H2 + 1) sin(πH1) sin(πH2)

− ρ2xΓ(H1 +H2 + 1)2 sin2(π(H1 +H2)/2) > 0. (2)

Further, let W denote a 2 × 2 invertible matrix, then {Y (t) =
(Y1(t), Y2(t))}t∈R is defined as {Y (t)}t∈R = {WX(t)}t∈R. A

parsimonious parametrization of Y (t), in 7 parameters accounting

for under-determinations, Θ = (H1,H2, ρx, σx1 , σx2 , β, γ), has

been proposed [24, 25, 26]:

W =




1√

1+γ2

β√
1+β2

−γ√
1+γ2

1√
1+β2



 ,ΣX =

(
σ2
x1 σx1σx2ρx

σx1σx2ρx σ2
x2

)
.

(3)

Wavelet analysis. Let Y δ denote the increment process of Y :Y δp (t) =
Yp(t+1)−Yp(t), p = 1, 2. The multivariate discrete wavelet trans-

form (DWT) of Y δ , (Dy1(j, k), Dy2(j, k)), is defined as:

Dyp(j, k) =

∫

R

ψj,k(t)Y
δ
p (t)dt, (4)

where {ψj,k(t) = 2−j(0.5−µ)ψ0(2
−j/2t− k)}(j,k)∈Z2 (5)

denotes the collection of dilated and translated templates of ψ0, an

oscillating reference pattern with joint time and frequency localiza-

tion. It is referred to as the mother wavelet and further characterized

by its number of vanishing moments Nψ , a positive integer, defined

as ∀n = 0, . . . , Nψ−1,
∫
R
tkψ0(t)dt ≡ 0 and

∫
R
tNψψ0(t)dt 6= 0.

For a detailed introduction to wavelet transforms, interested readers

are referred to e.g., [27]. We have introduced an additional parameter

µ (compared to classical definition) which acts as a fractional inte-

gration parameter [28] and whose practical crucial role is detailed in

Section 4.

Combining Eq. (1) with Y (t) = WX(t), and using ηj,h =
1
2

∫
R2

(
|u+ 2−j |2h + |u− 2−j |2h − 2|u|2h

)
ψ0(v)ψ0(v−u)∗dudv,

it can be shown that [25, 26]:

EDy(j, k)Dy(j, k)
∗ =

(
(E11(Θ))j (E12(Θ))j
(E12(Θ))j (E22(Θ))j

)
(6)

with (E11(Θ))j = (1 + γ2)−1σ2
x1ηj,H1

2j(2H1+1+2µ)

+2β(1+β2)−1/2(1+γ2)−1/2ρxσx1σx2ηj,H1+H2
2

2j(H1+H2+1+2µ)

+ β2(1 + β2)−1σ2
x2ηj,H2

2j(2H2+1+2µ), (7)

(E12(Θ))j = −γ(1 + γ2)−1σ2
x1ηj,H1

2j(2H1+1+2µ)

+(1−βγ)(1+β2)−1/2(1+γ2)−1/2ρxσx1σx2ηj,H1+H2
2

2j(H1+H2+1+2µ)

+ β(1 + β2)−1σ2
x2ηj,H2

2j(2H2+1+2µ), (8)

(E22(Θ))j = γ2(1 + γ2)−1σ2
x1ηj,H1

2j(2H1+1+2µ)

−2γ(1+β2)−1/2(1+γ2)−1/2ρxσx1σx2ηj,H1+H2
2

2j(H1+H2+1+2µ)

+ (1 + β2)−1σ2
x2ηj,H2

2j(2H2+1+2µ). (9)

Estimation. In practice, the ensemble average EDy(j, k)Dy(j, k)
∗

is replaced by the sample mean estimator (with N the sample size)

S(2j) = 2j

N

∑N/2j

k=1 D(2j , k)D(2j , k)∗.

Univariate analysis. Univariate analysis of self-similarity consists

in performing a linear regression of log2 Sp,p(2
j) against log2 2

j =
j to yield univariate parameters Hp, p = 1, 2, [12, 4, 7]. This

amounts to neglect the potential mixture of power-laws inherent to

multivariate self-similarity and to assume a priori the absence of

mixing, i.e., β = γ = 0. When mixing is present, this leads to a

substantial bias in the estimation of the Hps [25].

3. BIVARIATE-OFBM FULL IDENTIFICATION

Non linear regression. Elaborating on [25, 26], the originality of

the present contribution is to formulate the full identification of Biv-

OfBm (i.e., the estimation of Θ) as a non linear regression:

Θ̂ = argmin
Θ∈Q

2∑

p,p′=1

j2∑

j=j1

(log2 |(Sp,p′)j | − log2 |(Ep,p′(Θ))j|)2 ,

(10)

where the use of the logarithm ensures that all scales 2j , j ∈
{j1, . . . , j2} contribute equally. Minimizing Eq. (10) is intricate

because of the non convexities of both the implied functional (as a

mixture of power laws) and the search space (due to Constraint 2):

Q =
{
Θ = (H1,H2, ρx, σx1 , σx2 , β, γ) ∈ R

7 |Θ ∈ [0, 1]3×

[0, σmax]
2 × [−1, 1]2, g(H1,H2, ρx) > 0, H1 ≤ H2

}
. (11)

Branch & Bound optimization. To find the global minimizer Θ̂ in

Eq. 10, the second originality of this work is to resort to a Branch &

Bound (B&B) procedure [29], as devised and studied in [26]. The

B&B procedure avoids greedy searches by smart enumerations that

stem from the repetition of the following steps until a stopping crite-

rion is reached: i) Partitioning: Choose any region R from the search



space and divide it into two smaller regions Ra and Rb ; ii) Bound-

ing: Compute lower and upper bounds of the objective function in

Eq. 10, on Ra and Rb. Lower bounds are obtained by interval arith-

metic (cf. [30]), a technique that combines elementary operations to

produce rough lower bounds ; iii) Pruning: Discard regions that do

not satisfy Eq. 2 and regions whose lower bound is larger than the

smallest upper bound. The corresponding algorithm solving (10) is

fully detailed in [26] and MATLAB routines will be made publicly

available at the time of publication.

Estimation performance. The estimation performance of the

proposed B&B procedure is assessed by Monte Carlo simula-

tion. The procedure is applied to independent copies of synthetic

OfBm, whose sample size (N ≃ 3600) and parameter settings

(1 & Ĥ2 ≥ Ĥ1 & 0.8, cf. Fig. 3 and ρ̂ = 0.8) match those observed

or expected for the Internet traffic analyzed here |H2 − H1| = 0
or |H2 − H1| ≃ 0.2, with or without mixing W . Synthesis and

analysis procedures were devised by ourselves. The quality of the

estimation performance is quantified in Fig. 1, which shows that

whereas correlation and mixing parameters remain difficult to esti-

mate for short time series, and settings that mimic Internet traffic,

while H1 and H2 are always well estimated.
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Fig. 1. Estimation performance on synthetic OfBm, for four

configurations potentially matching Internet Traffic: (H1,H2) =
(0.9, 0.9) or (0.7, 0.9), (β, γ) = (0, 0) or (0.5, 0.5).

4. MAWI DATABASE AND RANDOM PROJECTIONS

MAWI database. The MAWI repository [21, 31] is an on-going

collection of Internet traffic traces, captured within the WIDE back-

bone network (AS2500) that connects Japanese universities and

research institutes to the Internet. Packet 5-tuple and timestamps,

collected daily from 14:00 to 14:15 (Japanese Standard Time),

are anonymized and made publicly available. Each trace contains

roughly 100 to 150 million IP packets.

Random projections. As discussed in Section 1, a major issue in

anomaly detection consists in defining and computing a reference

normal traffic for comparisons. Yet, the ever varying nature of Inter-

net traffic precludes the use of traffic collected another day or from

another network [4, 7]. Instead, the use of random projections (or

sketches) [6] has been shown to be a relevant procedure to construct

self-reference of normal traffic. In random projections, each IP

packet is attributed to one of the M outputs of a hash table [32],

acting on one selected element of the 5-tuple (here the IP Source

address). Therefore, all packets of any given flow with the same IP

Source address are allocated together to the same randomly chosen

entry in the hashtable. Traffic is hence split into M sub-traffic.

When traffic contains no anomaly, all sketches are expected to be

statistically equivalent. When traffic contains some anomalies, asso-

ciated to one same IP Source address, all corresponding packets are

associated to the same sketch, while all other sketches are anomaly

free. Comparisons across sketches can then be used to construct

reference statistics for normal traffic and hence to detect anomalies.

Fractional integration. While in OfBm model, theoretically

0 < H1 ≤ H2 < 1, estimated H for normal traffic takes large

values, close to 1, as well documented in [4, 7]. This practically

raises severe issues with respect to the proposed B&B procedure

described above, as some data may randomly and accidentally lead

toH that exceeds the allowed range. This is illustrated in the reports

of univariate based estimates of H (bottom row in Fig. 3), since

univariate wavelet based estimation does not force H ∈ (0, 1) (cf.

e.g., [12, 4, 7]). To circumvent this issue, the present contribution

introduces an extra fractional integration parameter µ in the defi-

nition of the wavelet coefficients, cf. Section 2. Instead of using

a single and standard µ ≡ 1 that matches synthetic OfBm with

Internet data, wavelet coefficients are computed using µW = 1/2
(in Eq. 5) while the B&B procedure is applied with µB = 1 (in

Eqs. 7 to 9): This amounts to fractionally integrate data to force H1

and H2 to live well in the middle of the (0, 1) range. Estimation of

H1 and H2 needs then only to be shifted a posteriori by µB − µW .

Because, we will mostly use H2 −H1, this does not impact results

and conclusions. We see the practical possibility of decoupling and

tuning parameters 0 < µW = 1/2 ≤ 1 and µB = 1 as an original

and practically efficient trick in the proposed procedure that permits

to adjust to the specificities of real world data.

5. OFBM MODELING AND ANOMALY DETECTION

Setting. Results are reported here for four traces collected on four

different days, in 2008, 2013, 2014 and 2015, as typical and very

recent examples of Internet traffic for the case study intended here.

Hash tables with M = 16 outputs are used. Sketches are aggre-

gated at ∆0 = 0.25s, as it is now well documented that in Internet

traffic, self-similarity develops across scales ranging from seconds

to hours [12, 4, 7]. Examples of aggregated sketches are illustrated

in Fig. 2 both for packets (first column) and bytes (last column).

Wavelet analysis is conducted using least asymmetric orthogonal

Daubechies wavelets with Nψ = 2 vanishing moments [27]. The

minimization of Eq. (10) is conducted using scales j1 = 3 to j2 = 8,

corresponding respectively to time scales ranging from 2s to 1min

(as available data are limited to 15min durations). Although the

full identification of Biv-OfBm requires 7 parameters, we focus

here on the estimation of the 5 most interesting parameters, namely

Θ = (H1,H2, β, γ, ρx) and set σx1 = σx2 = 1 by a priori data

normalization. Estimation of Θ is done based on the proposed B&B

procedure for each sketch of each dataset.

Metadata and ground truth. Metadata regarding anomalies in

Internet MAWI traffic were provided to us by experts via the out-

puts of a computerized procedure, MawiLab [33], inspecting the

content of Internet traffic in an automated and systematic manner:

MawiLab relies on the combined use of several benchmark anomaly

estimators. It is worth emphasizing that these metadata thus do not

constitute the ground truth but only indications against which the

outputs of the proposed detection procedure can be compared.

Internet traffic statistical modeling with Biv-OfBm. Fig. 2 illus-

trates a posteriori that the joint statistics of packet and byte counts,

empirically estimated using Sp,p′(j), match well Biv-OfBm model

Ep,p′(Θ̂), with parameters Θ̂ estimated using the proposed B&B

minimization procedure. It also shows that OfBm models equally

relevantly sketches with and without anomalies, yet with obviously

different estimated parameters Θ̂. Fig. 2 shows that the use of the

chosen 5 parameter parametrization is satisfactory.

Anomaly detection. Parameters Θ estimated for each sketch and

each trace were compared with the available MawiLab anomaly

metadata. First inspections, not reported here for space reasons,

show that the estimated correlation ρ and mixing β and γ parame-
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Fig. 2. Bivariate-OfBm model for packet and byte aggregated time series. First and last column: Normalized Pkt and Byte count time

series ; 2nd to 4th column: comparisons of log2 Sp,p′ (blue) vs. log2Ep,p′(Θ̂) (red) for (p, p′) = (1, 1), (1, 2) and (2, 2). Sketch without

(top) and with (bottom) anomaly.
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ters do not seem to correlate well with the occurrence of anomalies.

This may partly be explained by the poor estimation performance

for these parameters, as observed in Monte Carlo simulations, in

a comparable setting. This analysis however clearly indicates that

mixing parameters β and γ significantly depart form 0, thus show-

ing the need for bivariate estimation for a non-biased estimation

of parameters H1 and H2. Comparison of top and bottom rows in

Fig. 3 shows significant discrepancies between the univariate esti-

mates (HU
byt,H

U
pkt) and the bivariate ones (H1,H2), which clearly

illustrate the limitations and biases of univariate analysis.

The inspection of H1 and H2 estimated from the bivariate B&B

procedure tends to show that large deviations of |H2 − H1| from

0, match a significant number of sketches marked by MawiLab as

containing a large number of anomalous packets, cf. Fig. 3, top

row. A close inspection of Fig. 3 shows that the agreement between

departures from 0 and occurrences of anomaly is not perfect, which

may have two origins: As mentioned above, metadata are not the

ground truth, and some anomalies might have been missed by Maw-

iLab procedure. Alternatively, some anomalies relevantly detected

by MawiLab may not be signed by a departures of |H2−H1| from 0
which may in turn indicate specific subclasses of anomalies. These

discrepancies, requiring deeper expert inspection, will be further

investigated. However, expert inspections indicate that i) the Trinoc-

ular anomaly, specific to a computer network experiment being run

on the MAWI network [34], is systematically detected ; ii) 96% of

Deny-of-Service attacks were detected for 2013 ; and iii) 100% of

Heavy Hitter anomalies were detected in 2014.

These case study results are altogether very encouraging and

consistent with the queuing mechanism connecting self-similarity to

heavy tail distribution of Internet objects proposed in [15, 16, 17]

that leads to predict identical Hurst exponents for packets and

bytes. They are also consistent with prior empirical results, relying

on univariate analysis of bytes and packets that tend to comfort

Hbyt ≃ Hpkt for normal traffic, while departures of Hbyt from

Hpkt may indicate anomalies [4, 7].

6. CONCLUSIONS AND PERSPECTIVES

The present contribution promotes the use of multivariate models

for self-similarity, such as OfBm and proposes, to the best of our

knowledge, the first procedure for the full identification of OfBm. It

consists of a non-linear regression on log wavelet coefficients, solved

by an original Branch and Bound procedure. Numerical simulations

conducted on independent copies of synthetic OfBm show that the

propose procedure achieves, in parameter settings that match those

observed in Internet traffic, satisfactory performance for the estima-

tion of the Hurst exponents H1 and H2, while the estimation of

the correlation and mixing parameters turns more difficult in such

settings. MATLAB procedures implementing analysis and synthesis

will be made publicly available at the time of publication.

It is then shown that bivariate OfBm constitutes a relevant model

to describe jointly the scale invariance properties observed in Inter-

net traffic for both packet and byte time series. It also shows that

Biv-OfBm is relevant both for regular or normal traffic and for traf-

fic with anomalies. These per se original results permit to conduct

an anomaly detection case study, which in turn provides significant

evidence that certain types of anomalies are marked by a significant

discrepancy between Hbyt ≃ Hpkt. Results are satisfactory enough

to call for a large scale systematic study, with enriched metadata, that

may permit not only the detection of anomalies but also the classifi-

cation of the types of anomalies that can be detected by a change in

their scale invariance properties. This is under current investigation.
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