
MATATABI: Multi-layer Threat Analysis Platform
with Hadoop

Hajime Tazaki
The University of Tokyo,

Japan

Kazuya Okada
Nara Institute of Science
and Technology, Japan

Yuji Sekiya
The University of Tokyo,

Japan

Youki Kadobayashi
Nara Institute of Science
and Technology, Japan

Abstract—Threat detection and analysis are indispensable
processes in today’s cyberspace, but current state of the art
threat detection is still limited to specific aspects of modern
malicious activities due to the lack of information to analyze.
By measuring and collecting various types of data, from traffic
information to human behavior, at different vantage points for a
long duration, the viewpoint seems to be helpful to deeply inspect
threats, but faces scalability issues as the amount of collected data
grows, since more computational resources are required for the
analysis. In this paper, we report our experience from operating
the Hadoop platform, called MATATABI, for threat detections,
and present the micro-benchmarks with four different backends
of data processing in typical use cases such as log data and packet
trace analysis. The benchmarks demonstrate the advantages of
distributed computation in terms of performance. Our extensive
use cases of analysis modules showcase the potential benefit of
deploying our threat analysis platform.

Index Terms—Cybersecurity, Multi-layer threat analysis,
Hadoop

I. INTRODUCTION

In parallel to the growth of the Internets functionality as
a distributed system, the number of critical threats is also
increasing, rendering pro-active defensive approaches trouble-
some. Various categories of malicious activities have been seen
in the wild, and multiple countermeasures have been proposed
and deployed. Unfortunately, no defense mechanism has been
able to completely hinder attacks and bring an end to this
perpetual arms race.

A significant obstacle against deploying a countermeasure
for such threats, is the lack of knowledge of what is happening
in the system: a single point of observation at the firewall
has no knowledge about the other egress nodes of an enter-
prise network, or scanning applications deployed at various
endpoints lack global information which would provide infor-
mation whether their probing is assisting a Distributed Denial
of Service (DDoS) attack. The limited number of observation
points and type of information collected needs improvement.

The recently established NECOMA project1 aims at im-
proving the situation of current cyber-security, by introducing
new insight regarding countermeasure. It assumes the missing
pieces for creating robust countermeasure are the lack of 1)
information or types of datasets for threat analysis and 2)
locations that observers should look at. In the other words,
the more data is available about an attack, the more data can

1http://www.necoma-project.eu/

be analyzed and thus, the higher the probability that the most
effective countermeasures are taken.

However, such a huge collected dataset easily faces a
scalability problem in terms of not only the storage of the
collected data, but also computation resource of the analysis
itself because it also requires a fair amount of computational
resource to investigate the datasets across the multiple sensors
at different layers and various locations.

This paper reports our experience on the development of
a big-data platform, called MATATABI, in order to fulfill the
requirements for cyber-threat analysis (detailed in § II). We
combined possible techniques and ideas available to satisfy
the requirements, by incorporating and tweaking existing open
source software. Our development follows several basic studies
([13][12][14]) in the past, but aimed at creating more complete
system that allows us to detect complex security threats
involving multiple data sources and locations of attackers.

Our contributions of this paper include:
• We designed and implemented the data collection and

analysis platform, MATATABI, to handle multi-terabytes
measurement data for the security threat analysis.

• We studied performance of our system with data querying
benchmarks and gave the best practice for the implemen-
tations of threat analysis modules.

II. REQUIREMENTS

Considering the amount of collected data for the threat
analysis, the design of data collection and analysis platform
must satisfy the following properties;
R-1) the input and output performance of data must be scal-

able in terms of size of analyzed data (scalability).
R-2) the computation resource must be scaled out with the

number of nodes: hopefully real-time performance for
the detection of threats on the fly (real-time analysis).

R-3) the platform must be adaptable with the multiple kinds
of data types (e.g., formatted text, binary data, etc)
and layers (e.g., network traffic, user behaviors, etc)
without introducing new ways to analyze them (uniform
programmability).

R-1 and R-2 are obvious requirements, but R-3 is also
important since one cannot predict threats, but is required to
detect them once they happen.

We will describe the system and how it fulfills the afore-
mentioned requirements in the following section.

HDFS

DGA

Analyzer

DDoS

detection

Hive/

Presto
Thrift Mahout Rhadoop

DNS querylog
dns-pcap

sflow
netflow
spam

open resolver
phishing
darknet

topology
endpoint

user behavior
client honeypot

Hadoop Cluster

API (JSON)

hadoop-

pcap

anomaly

detection

(2) Data

import
Measurement

Data

(3) Analysis

Module

(1) Data

Storage

Fig. 1. Overview of MATATABI. Based on the Hadoop platform, we integrated the data storage with import modules, analysis scripts, and an application
programing interface in a single platform.

III. DESIGN OF MATATABI PLATFORM

This section presents the design of our platform, so called
MATATABI that serves data collection and analysis for the
threat detection in order to fulfill the requirements described
in § II. Figure I depicts the overview of our implemented
platform, which consists of three key components; 1) data stor-
age in a distributed environment, 2) data import modules, 3)
analysis modules, and 4) Application Programming Interface
(API) with the help of Apache Hadoop [1] software2.

A. Data Storage and Base Software

The data storage component relies on the Hadoop Dis-
tributed File System (HDFS) to locate and access data in a
distributed environment so that applications are agnostic to
access the data where they are running on. We employed
totally nine cluster nodes in total (Table I) distributed across
several Japanese universities.

On top of served distributed file system, various data access
utilities such as Hive [2] (SQL liked interface), Presto-db [5]
(distributed query engine), and language bindings (Thrift [3],
Rhadoop [6]) are employed in order to create analysis modules
(§ III-C). These varieties of utilities are helpful not only
for its friendliness to Hadoop environment, but also we can
reuse existing analysis implementations used at stand-alone
environments without reimplementing a lot. Furthermore, SQL
like interface provided by Hive or Presto-db is useful to
analyze multiple layers of data sources with simple query
statements.

B. Data Import Module

The data import module basically works for copying various
kinds of collected data into HDFS so that the analysis mod-
ule implemented by the Map-Reduce framework can access
directly. It will benefit locality during data reading process, as
it is arranged by Hadoop automatically.

2At the moment, we used Apache Hadoop 2.2.0 version.

TABLE I
EQUIPMENTS OF HADOOP CLUSTER.

CPU RAM Storage
master 2.5GHz (8 cores) 24GB 1.9TB

hadoop1 2.2GHz (16 cores) 38GB 52GB
hadoop2 0.8GHz (8 cores) 68GB 77GB
hadoop4 0.8GHz (8 cores) 68GB 77GB
hadoop6 0.8GHz (8 cores) 32GB 253GB
hadoop7 2.2GHz (16 cores) 50GB 1.9TB
slave02 2.0GHz (24 cores) 64GB 6.6TB
slave03 2.0GHz (24 cores) 64GB 6.6TB
slave04 2.0GHz (24 cores) 64GB 6.6TB

Table II describes the list of data import modules which we
have used at the present moment. Some of them are converted
to Hive-oriented table, others are stored as-is (binary data).

For the data access via Hive, Hive Serializer/Deserializer
(SerDe) is used to read and write HDFS data with a custom
format. It allows us to reduce the cost of implementing a data
import module. We slightly modified RIPE pcap SerDe [4] for
the data stored in pcap format.

Figure 2 is an example of a Hive database schema, which
represents a custom format definition of pcap file containing
DNS packets. With PcapDeserializer of the RIPE mod-
ule, pcap files can be queried with an SQL-like language.

C. Analysis Module

The analysis module works on top of data store which
provides high computation resource with flexible data access
interface. Unlike ordinary applications for threat analysis run-
ning on a standalone machine, the module will benefit from the
distributed computations by Map-Reduce or distributed query
engine of Presto-db.

An example of the process of our implemented analysis
module, and the corresponding queries to the Hive/Presto-db
can be seen in figure 3: 1) to look for events in collected
datasets which contain suspicious indications of threat, 2) find
the behavior of the indications into another dataset to identify

TABLE II
DATA CONVERSION INTO HDFS.

format parser data size (per day) remark
DNS pcap as-is PcapDeserializer (hadoop-

pcap [4])
5GB date/node partitioned

Netflow csv CSV 1.2GB nfdump, lzo compress,
date/node partitioned

sFlow csv CSV 4.1GB sflowtool, lzo compress,
date/node partitioned

DNS querylog ssv (bind9) SSV 1.5G date/node partitioned
SPAM email SSV 4.5MB date/MUA partitioned

� �
CREATE EXTERNAL TABLE IF NOT EXISTS dns_pcaps (ts bigint,

protocol string,
src string,
src_port int,
dst string,
dst_port int,
len int,
ttl int,
dns_queryid int,
dns_flags string,
dns_opcode string,
dns_rcode string,
dns_question string,
dns_answer array<string>,
dns_authority array<string>,
dns_additional array<string>)

PARTITIONED BY (dt string, server string)
ROW FORMAT SERDE

’net.ripe.hadoop.pcap.serde.PcapDeserializer’
STORED AS INPUTFORMAT

’net.ripe.hadoop.pcap.io.PcapInputFormat’
OUTPUTFORMAT

’org.apache.hadoop.hive.ql.io.\
HiveIgnoreKeyTextOutputFormat’

LOCATION ’hdfs:///dns-pcaps/’;� �
Fig. 2. Example Hive table scheme for pcap data.

� �
1) select * from dns_pcaps where regexp_like \

(dns_question, ’[a-z0-9]{32,48}’);
2) select * from netflow where srcip=’192.168.10.1’;
3) select time,client_fqdn from suspicious_flow ;� �

Fig. 3. Steps for an analysis module to seek suspicious flows through multiple
data sources.

correlations among multiple data sources (where 192.168.10.1
is the IP address that first query detects it as suspicious host),
and 3) extract some attributes from the indications and store
into a blacklist.

D. MATATAPI: API for MATATABI

The analytical results obtained from our platform are valu-
able not only for our own purpose, but also the others who
try to detect threats from their analysis. Multi-dimensional
analysis using different datasets at the different physical or
logical space will help early threat detection: if indication
of threats were detected in advance and propagated these
information to others, one can countermeasure against such
threats.

� �
def Query (time_min, time_max):

headers = {
’context-type’: ’text/plain’,
’x-presto-user’: ’presto’,
’x-presto-catalog’: ’hive’,
’x-presto-schema’: ’default’
}
url=’http://master:8080/v1/statement’

data = "select dga_domain from zeus_dga_result
where dt >= ’%s’ AND dt <= ’%s’"
% (time_min, time_max)

request = urllib2.Request (url, data, headers)
return json.loads (urllib2.urlopen(request).read())� �

Fig. 4. A sample python program of MATATAPI bridge program.

For that purpose, we designed MATATAPI, an application
programing interface (API) for MATATABI, in order to provide
an interface for accessing analytical results. Our design is
a simple wrapper for the existing Presto REST API, which
is available by Presto-db and generates JavaScript Object
Notation (JSON) objects for a certain request through the API.
All we need to provide an API is 1) to create a Hive (or Presto-
db) table, and 2) to write a bridge program from client requests
to Presto REST API.

Figure 4 represents an example of the bridge program
written in python, where it bridges requests received via
http transport and runs as a CGI program on a web server.

IV. MICRO-BENCHMARKS

In order to assess the performance of the data processing
of use cases that are typical to threat analysis, we conducted
micro-benchmarks in this section. The objectives of this
benchmark are:

• to observe the scalability for the amount of data (data
size), and

• to present a best practice for implementing the analysis
module.

A. Regular Expression Match on Plain Text Files

The first benchmark shows the response time for data query
when the amount of data scanned for the queries increases.
Since the data collected for the analysis increases day by day
and is easy to fill up the storage, it is important to understand
how much data we can process in order not to degrade the
performance of analysis.

 0

 500

 1000

 1500

 2000

 2500

1 10 31

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Amount of data duration (day)

shell-grep
Hive

prestodb
Streaming

Fig. 5. Performance parsing on plain text data (DNS query log).

� �
’[a-z0-9]{32,48}.(ru|com|biz|info|org|net)’� �

Fig. 6. Regular expression of a DGAed domain name.

To measure the performance, we setup scripts that conduct a
simple query to pick events from the data sources. The scripts
we used are 1) grep command-based shell script without
Hadoop (shell-grep), 2) Hive query language, 3) Presto-
db SQL, and 4) python script of Hadoop streaming. All the
scripts parse and look for strings using a regular expression
shown in figure 6, which represents the Domain Generation
Algorithm (DGA) for ZeuS Bot [17]), and then print the results
to the console screen.

As a target data for this benchmark, we used a) formatted
text based log files which contain bind93 querylog, and b)
pcap files which contain DNS traffic.

We ran the scripts on our Hadoop cluster described in
Table I (except 1) shell-grep script, which uses a single
node, master, with local storage) and measured the execution
time of each script.

Figure 5 represents the result of response time of each script
as a function of data size (i.e., we changed the number of date
to be parsed) with the 95% confidence interval computed for
3 replications of script execution.

The performance of single node data queries present a
slower response time, while distributed computation by Hive
and Presto-db gives faster response (40% faster in the best
case), when the size of data parsed increased. Note that
although our hadoop streaming script dispatched query jobs
into distributed node, we did not see much performance gain.
This may be due to an implementation matter of the streaming
script that we used, but it is possible to achieve such a
performance with a simple mapper/reducer implementation for
the hadoop streaming.

 100

 1000

 10000

 100000

1 10 31

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Amount of data duration (day)

shell-grep
Hive

prestodb
Streaming

Fig. 7. Performance parsing on binary data (pcap file).

B. Regular Expression Match on pcap Files

Figure 7 represents another benchmark using different
datasets, pcap files contain DNS traffic, in the same environ-
ment. In this benchmark we have completed only one iteration
of the benchmark due to time constraints.

Unlike the performance on queries to plain text files shown
in figure 5, the shell-grep performance is worse: the
response time was 21 times slower in the worst case than
the one of Presto-db. This is possible considering heavy tasks
in each filtering process: extracting gzip compressed data of
original pcap files, decoding packet data from pcap format
by tshark command, and regular expression matching by
grep command. On the other hand, other scripts using hadoop
infrastructure employs RIPE hadoop-pcap library which
effectively dispatches reading files and string matching oper-
ation into distributed nodes, resulted in a high performance
gain compared to the shell-grep implementation. Note
that the RIPE hadoop-pcap library also stores the raw
pcap data into HDFS, and then decompresses and decodes
the file when data query is issued so, the both response times
of shell-grep and others involve same procedure.

Presto-db achieves almost the best result among the four
different scripts, with a low implementation cost for the data
parsing script. If an analysis is based on simply looking up
events on a Hive table, Presto-db is the best possible choice
for a data store.

C. Processing Multiple Datasets

The last benchmark is a performance measurement on
querying multiple datasets at the same time to analyze com-
mon interests between different datasets. This is an interesting
feature of multi-layer threat analysis: if a dataset contains
interests of threat, the other dataset may give the behavior
of malicious activities more deeply.

In this benchmark, we used a query across the two Hive
tables, Netflow records (i.e. netflow) and suspicious ZeuS
DGA domain name list (i.e. zeus dga result), as depicted in
figure 8. The query tries to find traffic flows that communicates

3https://www.isc.org/downloads/bind/

with the Command and Control (C&C) server detected by a
DNS traffic scan using JOIN operation of Hive and Presto-db.
The netflow table for one-month traffic has about 757,144,720
records while the zeus dga result table has 2,171 records.
Since the size of the netflow table is relatively big and a
query takes a long time for the JOIN operations, we carefully
looked at three different file formats available for the Hive
table, which are TextFile, SequenceFile, and RCFile
(Record Columnar File) [9], and observed the variance of
response time.

� �
SELECT netflow.* FROM netflow

JOIN zeus_dga_result ON (zeus_dga_result.c2c_sv =
netflow.sa AND zeus_dga_result.dt=netflow.dt);� �

Fig. 8. Steps for an analysis module to seek suspicious flows through multiple
data sources.

Figure 9 represents the execution time of the query by Hive
and Presto-db as a function of the amount of data processed
(i.e., days), along with the standard deviation computed for five
replications. We measured three different types of file struc-
ture (i.e., TextFile, SequenceFile, RCFile) stored in
HDFS.

When we used TextFile for the data structure, we did not
have a benefit in performance since the structure is not able
to correctly split the job processing across multiple nodes,
resulting in a small number nodes executing the query. On the
other hand, SequenceFile and RCFile are well designed
for splitting jobs under MapReduce environment or Presto-db
distributed SQL engine, and the performance improves.

Note that while Presto-db outperforms Hive with regular
expression matching as shown in previous sections, the result
is almost opposite with JOIN operation: Presto-db only out-
performs one-day data with SequenceFile and RCFile
structure.

V. USE CASES

In this section, we present several use cases of MATATABI
as a threat analysis platform with huge amount of data.

A. Implemented Analysis Modules

ZeuS DGA detector
The first case is the detection of compromised hosts by the
ZeuS botnet in an enterprise network by scanning DNS queries
with a particular pattern of domain names as used in § IV-A.
This module detects compromised hosts of ZeuS bot in a
managed network, where a host queries suspicious domain
names, based on the Domain Generation Algorithm (DGA),
is considered a potential compromised host. In the case of
proxied query via a DNS forwarder, we looked at traffic
information filtered by the IP address of DNS answer records
to identify the client IP address.

NTP amplifier detector
This module searches for Network Time Protocol (NTP)

 10

 100

 1000

 10000

1 10 31

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Amount of data duration (day)

Hive (Text)
prestodb (Text)

Hive (SequenceFile)
prestodb (SequenceFile)

Hive (RCFile)
prestodb (RCFile)

Fig. 9. Performance of SQL JOIN queries on various internal formats of
Hive.

servers sending traffic with a particular packet size correspond-
ing to a well-known NTP-amplification attack [18]. It reports
the IP addresses of NTP amplifiers, and the IP address and
Autonomous System (AS) number of targeted victims.

An additional module for the detector extracts NTP flows
at the backbone sampling traffic (i.e., sFlow records) and lists
the top ten NTP flows within a given time period.

Anomalous heavy-hitter detector
By using simple statistical tests, this modules detects IP
addresses sending or receiving an abnormally high number
of packets or bytes, for example, caused by DoS attacks.

Phishing likelihood calculator
This module is an implementation of a previously proposed
system [15], which provides a binary detection whether a
given URL points to a phishing site or not. The module
consists of dataset preparation by crawling contents on pre-
known phishing sites provided by PhishTank4, analyzed by
machine learning method with the help of Mahout. The dataset
is updated every day since phishing sites changes frequently.

DNS amplification detector
The module tries to detect anomalous DNS traffic, causing am-
plification attack which fills the link capacity and makes denial
of services. It looks at two different datasets, backbone sFlow
traffic records and a list of open DNS resolver servers [19],
and ranks top 10 speakers of DNS flow which communicates
with open resolvers in sFlow datasets.

UDP fragmentation
As realizing an additional way for cache poisoning attack on
DNS server based on IP fragmented packets [10], we started
to observe how much traffic employed fragmented packets
in the backbone traffic. The script simply extracts a record
from sFlow dataset and implements a counter-based detection
approach.

DNS anomaly detection
This module tries to detect anomalies of DNS response packets
by adapting a machine learning method. Various statistical
features such as IP addresses, the country code of DNS server,

4http://www.phishtank.com/

TABLE III
ANALYSIS MODULES ON MATATABI.

Name datasets frequency LoC (#lines) remark
ZeuS DGA detector DNS pcap, netflow daily 25 hadoop-pcap

UDP fragmentation detector sflow daily 48
Phishing likelihood calculator [15] Phishing URLs, Phishing content 1-shot – Mahout (RandomForest)

NTP amplifier detector netflow, sflow daily 143 pyhive, Maxmind GeoIP
sflow daily 24

DNS amplifier detector sflow, open resolver [19] daily 37
Anomalous heavy-hitter detector netflow, sflow daily 106 pyhive

DNS anomaly detection DNS pcap, whois,
malicious/legitimate domain list

daily 57 hadoop-pcap, Mahout (RandomForest)

SSL scan detector sflow 1-shot 36
DNS failure graph analysis [11] DNS pcap daily 159 pyhive

Malware Domain List5, legitimate domain list, and the AS
number of the DNS server are used for the analysis.

SSL scan detector
This module extracts SSL/TLS scans sFlow traffic data, which
frequently happened right after the discovery of Heartbleed
bug in OpenSSL library. The module simply counts packets
destined to a specific port number, and containing the TCP
SYN flag.

DNS failure graph analysis
This module tries to find suspicious non-existing domain
names and IP addresses that might belong to botnets. The
analysis is an implementation of an existing method, DNS
failure graphs [11], based on a clustering technique.

Visualization
Figure 10 shows an example of visualization, representing a
ranking of frequent asked domain names that matched with
the regular expression of the ZeuS DGA, based on the result
which the module generates. This visualization is implemented
by using d3js6 with the data available via MATATAPI.

Fig. 10. Visualization of the number of DGAed queries asked.

B. Summary
Table III summarizes all the implemented analysis modules

that we have come up with so far (almost for one year). Thanks

5http://www.malwaredomainlist.com/
6http://d3js.org/

to the pre-processed data by import module of each dataset and
uniform programmability of MATATABI, multiple experiments
have been conducted. Furthermore, the script are small and
easy to implement, with most of the ranging from from 20 to
160 Lines of Code (LoC).

VI. DISCUSSIONS

Early warning on a threat: As the number of cyber-
attacks grows, detection mechanisms and countermeasures
against threats targeting at enterprise are becoming indispens-
able. The convention on cybercrime [16], which the Japanese
government has signed, states that the maximum duration for
preserving computer data shall be 90 days. Once a company
encounters a cyber-attack, it is required to analyze in detail
the information collected during the attack, contained in the
data logs, deploy countermeasures for both the source and
targets of the attack, and identify the range of influence. As
indicated with our benchmark in figure 5, MATATABI with
DNS querylog is able to process data from one month (31
days) within 500 seconds, and might be possible to process
within 20 minutes if the stored data spans a duration of 90
days. The hadoop-based infrastructure allows us to increase
the number of recorded information processed and gives a
potential to analyze multiple data sources for a long duration,
which include the target incident to be detected.

Best practice for implementing analysis module: cur-
rently Presto-db presents the best performance on simple data
querying as shown in § IV, but the software is still young and
has limitations on creating table onto the original database,
among others. Therefore we still use Hive for such operations
in the data import and analysis modules. Furthermore, the
performance result of SQL JOIN operation between Hive and
Presto-db suggests that Hive with RCFile achieves good
response time in our benchmarks, even for large amount
of parsed data. Calculations after the queries need different
processing on data and can use available utilities such as
Rhadoop, which is provided by the streaming feature of
Hadoop.

Users can benefit from each method available for Hadoop
depending on what the analysis modules require.

The adaptability of open source tools: The open source
tools that we incorporated into our system, introduced ex-

tended functionality during initial deployment, without requir-
ing much effort to be invested during the software develop-
ment. Indeed, it requires to modify such software not only
fixing bugs in the original one, but also optimizations for our
purposes to handle the huge size of data7.

Using a combination of Apache Hadoop, Hive, and Face-
book Presto-db makes a faster deployment of our MATATABI
system, but introduces difficulties in terms of operating the
system. The issues we have faced so far are: 1) appropriate
resource dispatch between concurrent threat detections, 2)
inability to estimate each job’s duration, which may keep
occupying processors’ resource, 3) precise access control on
each job, among others. These are not originally addressed by
a particular software, and require careful system operation in
the end.

VII. RELATED WORK

P 3 [13] studied Hadoop platform to analyze a large amount
of traffic data, with improving RIPE hadoop-pcap by
reducing computational overhead. DDoS-Hadoop [12] extends
P 3 to introduce a counter-based DDoS anomaly detection
method on Hadoop. Both very early studies are our basis and
gave the potential benefits of multi-terabytes traffic analysis
with pcap and netflow data.

Li et al. [14] proposed a system to classify the host
roles (i.e., clients or servers, etc) by using sFlow traffic
with machine learning supported Hadoop environment. Their
objective is to provide an analysis platform to detect hosts
role from measurement data in timely manner with an online
system, while P 3 was focused on an offline analysis. Our
proposed MATATABI is also based on an offline analysis,
however it is also possible to be an online system providing
faster performance to inspect packets and flows on the fly if
further optimization to the data access performance would be
archived.

Hashdoop [8] introduced a way to speed-up the detection
of network anomalies by distributing heavy computations
among Hadoop cluster nodes. It shows 15 times speedup,
at maximum, compared to standalone version of detectors.
Also, accuracy evaluation with MAWILab [7] report as ground
truth data highlights better detection with Hashdoop. The key
benefit is to use hash function during job splitting to preserve
spatial and temporal structure of traffic dataset for the anomaly
detection. We plan to integrate their effort into our system in
near future.

VIII. CONCLUSIONS AND FUTURE WORK

We have reported MATATABI, a data collection and threat
analysis platform that uses the Hadoop environment. The
system has been designed to meet a set of requirements for
security threat analysis, and achieves scalability with uniform
programmable analysis module in a timely manner. Then we
have presented benchmarks on querying stored data and shown
speedups of up to 21 times (compared to a single machine),

7All of our modified and implemented modules are available at https://
github.com/necoma.

when the backend of MATATABI uses Presto-db as a data
store. We have also showcased the use cases with our designed
analysis modules to detect cyber threats with small amount of
effort required for implementation.

Our system is running daily to analyze and detect security
incidents from collected data, but there is still room for
improvement on the system. At first, most of analysis with
MATATABI is running every 24 hours as batch processes,
but shorter period and hopefully real time analysis would be
desired for certain threats. That would pose another challenge
for the system’s design such as faster data import rather than
importing files collected by measurement sensors. Another
direction for a broader system design is to integrate the threat
information sharing system with the provisioning mechanism
for defense, making information pipeline for more resilient
mechanism on cyber-threats.

ACKNOWLEDGMENTS

This research has been supported by the Strategic Interna-
tional Collaborative R&D Promotion Project of the Ministry
of Internal Affairs and Communication, Japan, and by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 608533 (NECOMA). The
opinions expressed in this paper are those of the authors
and do not necessarily reflect the views of the Ministry
of Internal Affairs and Communications, Japan, or of the
European Commission. This work was also supported by JSPS
KAKENHI Grant Number 26330101. Thanks to all the vol-
unteers, Romain Fontugne, Daisuke Miyamoto, Wataru Tsuda,
for the development of analysis modules on MATATABI.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/. (Accessed 30th January
2014).

[2] Apache Hive data warehouse. http://hive.apache.org/. (Accessed 30th
January 2014).

[3] Apache Thrift. http://thrift.apache.org/. (Accessed 30th January 2014).
[4] Large-scale PCAP Data Analysis Using Apache Hadoop.

https://labs.ripe.net/Members/wnagele/large-scale-pcap-data-analysis-
using-apache-hadoop. (Accessed 30th January 2014).

[5] Presto: Distributed SQL Query Engine for Big Data. http://prestodb.io/.
(Accessed 30th January 2014).

[6] RHadoop. https://github.com/RevolutionAnalytics/RHadoop/wiki. (Ac-
cessed 30th January 2014).

[7] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda.
MAWILab : Combining diverse anomaly detectors for automated
anomaly labeling and performance benchmarking. In CoNEXT ’10,
pages 8:1–8:12, Philadelphia, USA, 2010.

[8] Romain Fontugne, Johan Mazel, and Kensuke Fukuda. Hashdoop : A
mapreduce framework for network anomaly detection. Toronto, Canada,
2014.

[9] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, N. Jain, Xiaodong
Zhang, and Zhiwei Xu. Rcfile: A fast and space-efficient data placement
structure in mapreduce-based warehouse systems. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on, pages 1199–1208,
April 2011.

[10] A. Herzberg and H. Shulman. Fragmentation considered poisonous,
or: One-domain-to-rule-them-all.org. In Communications and Network
Security (CNS), 2013 IEEE Conference on, pages 224–232, Oct 2013.

[11] Nan Jiang, Jin Cao, Yu Jin, Li Li, and Zhi-Li Zhang. Identifying
suspicious activities through dns failure graph analysis. In Network
Protocols (ICNP), 2010 18th IEEE International Conference on, pages
144–153, Oct 2010.

[12] Yeonhee Lee and Youngseok Lee. Detecting ddos attacks with hadoop.
In Proceedings of The ACM CoNEXT Student Workshop, CoNEXT ’11
Student, pages 7:1–7:2, New York, NY, USA, 2011. ACM.

[13] Yeonhee Lee and Youngseok Lee. Toward scalable internet traffic
measurement and analysis with hadoop. SIGCOMM Comput. Commun.
Rev., 43(1):5–13, January 2012.

[14] Bingdong Li, Mehmet Hadi Gunes, George Bebis, and Jeff Springer.
A supervised machine learning approach to classify host roles on line
using sflow. In Proceedings of the First Edition Workshop on High
Performance and Programmable Networking, HPPN ’13, pages 53–60,
New York, NY, USA, 2013. ACM.

[15] Daisuke Miyamoto, Hiroaki Hazeyama, and Youki Kadobayashi. An
evaluation of machine learning-based methods for detection of phishing

sites. In Advances in Neuro-Information Processing, volume 5506 of
Lecture Notes in Computer Science, pages 539–546. Springer Berlin
Heidelberg, 2009.

[16] Council of Europe. Convention on Cybercrime, November 2001.
[17] CERT Polska. ZeuS P2P+DGA variant mapping out and understanding

the threat. http://www.cert.pl/news/4711/langswitch lang/en. (Accessed
30th January 2014).

[18] Christian Rossow. Amplification hell: Revisiting network protocols for
ddos abuse. In NDSS Symposium 2014, pages 224–232, February 2014.

[19] Yuuki Takano, Ruo Ando, Takeshi Takahashi, Tomoya Inoue, and
Satoshi Uda. A Measurement Study of Open Resolvers and DNS Server
Version. In Internet Conference 2013. IEICE, 2013.

