
INTERCEPT: High-interaction Server-type Honeypot based
on Live Migration

Daisuke Miyamoto
Information Technology Center

The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku,

Tokyo, JAPAN
daisu-mi@nc.u-

tokyo.ac.jp

Satoru Teramura
School of Engineering
The University of Tokyo

7-3-1 Hongou, Bunkyo-ku,
Tokyo, JAPAN

s.teramura@cnl.t.u-
tokyo.ac.jp

Masaya Nakayama
Information Technology Center

The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku,

Tokyo, JAPAN
nakayama@nc.u-

tokyo.ac.jp

ABSTRACT
This paper aims at developing a honeypot system for web
applications. The key idea is employing migration tech-
niques to create a virtual machine as a honey web server,
and making the honeypot to equip the same memory and
block content of the real systems. Recently, web applica-
tions have been the target of numerous cyber attacks. In
order to catch up new vulnerabilities in the applications,
using a honeypot system is a feasible solution. However, it
might be difficult to develop the lure-able, protect-able, and
deception-able honeypot for web applications. This paper
analyzes the background issues of the problem and finds the
missing piece toward the suitable honeypot. It also designs
and implements INTERCEPT, the core component of the
honeypot system for web applications, which can avoid the
data corruption as well as finishing the migration in short
time period. Finally, we discuss how to complete the missing
piece.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Security, Emulation

Keywords
Honeypot, Web application, Live Migration

1. INTRODUCTION
Web applications have become one of the popular targets

for cyber attacks. This is due to several reasons; for one, the
web applications manage a wide array of information includ-
ing financial data, medical records, social security, therefore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMUTools 2014March 17-19, Lisbon, Portugal.
Copyright 2014 ACM ...$15.00.

attacks aim at stealing the information [20]. Another rea-
son provided by McAfee [2] is the ease of exploitation of web
vulnerabilities, combined with the proliferation of low-grade
software applications written by inexperienced developers.
According to the report from OWASP [18], web vulnerabil-
ities allow a remote attacker to execute injection attacks,
e.g., SQL injection [13] and/or Cross Site Scripting [7] at-
tacks that input malicious codes to pose web hijacking, in-
formation leakage, malware infection, and so on.

A web application firewall (WAF) is one of the solutions
against attacks which filters suspicious code injection. Gen-
erally, it inspects the application layer so it usually comes
as an appliance type or as a server module [10]. There are
several algorithms for distinguishing suspicious codes from
HTTP request. The one is rule-based filtering, which checks
the HTTP request with the database of known attack pat-
terns. Besides the protection via blacklisting, WAF usually
supports whitelisting; With active whitelisting, the rule set
of the WAF describes the exact behavior of the applica-
tion [8]. Different from the rule-based methods, heuristics-
based methods calculate the likelihood of being a malicious
code and compare the likelihood with the defined discrimi-
nation threshold.

Unfortunately, it still remains challenges in order to block
code injection attacks. The rapid development of web ap-
plications arises numerous program bugs, the cause of web
vulnerabilities; therefore, building a perfect blacklist is te-
dious work. In the case of the whitelisting, the issue is that it
requires WAF operators to maintain rules of the legitimate
input and output for the applications. The core issue in
heuristics-based methods is detection accuracy. To achieve
higher detection accuracy, monitoring injection attacks and
analysis of them are necessary.

Herein, we present a server-type, honeypot systems for
observing web attacks. Theoretically, honeypots are decoy
systems to gather information regarding an attacker, and
have deception and luring capabilities. A honeypot offers
some services that appear perfectly normal to the attackers,
and looks alike as if the system has honey, e.g., valuable
data. Our motivation is to collect the information related to
cyber attacks toward web applications using the honeypot.

Our developed INTERCEPT is the core component of the
honeypot for web applications. The key idea is employing
live migration technique; INTERCEPT creates the perfect
copy of the legitimate virtual machine in few seconds and
isolates the attacks to the honeypot. By orchestrating IN-

Table 1: Interaction Level

Interaction low high
Actual OS / applications no yes

Risk low high
Operational cost low high

Performance low high

TERCEPT and existing components, this paper describes
the suitable honeypot which can protect valuable data from
leakage as well as observing attacks.

The rest of paper is organized as follows. Section 2 briefly
explain related work, and section 3 designs the architecture
of the honeypot for web applications. Section 4 implements
INTERCEPT, our proposed honeypot, and section 5 shows
the preliminary evaluation of INTERCEPT. Section 6 dis-
cusses the missing piece toward the suitable honeypot, and
finally summarizes our contribution in section 7.

2. RELATED WORK
Honeypot systems can be categorized into four types, namely

(i) high-interaction client-type honeypot, (ii), low-interaction
client-type honeypot, (iii) high-interaction server-type hon-
eypot, and (iv) low-interaction server-type honeypot. The
type, server or client, means that the honeypot systems work
as server or client computer. The key characteristics of the
interaction was explained in many articles [11, 12, 19], and
the summary is shown in Table 1.

The client-type honeypot systems are used to discover new
vulnerabilities in the client side systems, such as client OSes,
web browsers and their plugins. The honeypot systems usu-
ally crawl suspicious web content, allow malicious content to
exploit the system, and observe the attack methodologies.
For examples of the type (i), HoneyClient [14], Capture-
HPC [26], and Marionette [1] are used to analyze malicious
URLs for blacklisting. Assuming if a system, which was
composed of the latest version of Windows, Internet Ex-
plorer and plugins, was compromised while browsing. It
can be assumed that there was new vulnerability in the sys-
tem and the honeypot succeeded to find it. Instead of us-
ing the actual systems, the type (ii) honeypot systems such
as Honey-C [22] and Monkey-Spider [27] mimic the client
OSes, IP stacks and applications. While the attacks target
particular applications, it can reduce the risk for compromis-
ing. However, the observable information during the attacks
tends to be limited in comparison to the high-interaction
honeypot, as shown in Table 1.

The server-type honeypot systems aim at obtaining new
vulnerabilities by monitoring the trials of attack, penetra-
tion, and intrusion. In order to collect these events, the
honeypot systems need to induce the malicious people to
be targeted of the attacks. Since the type (iii) honeypot
systems are faced to the risk for compromising, the abili-
ties including containment are necessary. Referring to [24],
we will explain the requirements of the honeypot systems.
In the case of type (iv), the honeypot systems run tools
aiming at emulated vulnerable systems. For example, Ne-
penthes [3] and Deception Toolkit [6] mimic the vulnerable
applications. Unfortunately, there are several tools [15, 29]
for identifying the systems remotely, therefore, the attacker
are easily aware that their targeted system is honeypot.

Normal

User

Attacker

Router

Real database Honey database

Real web server Honey web server

Figure 1: Concept of High-interaction Server-type Honeypot
for web applications

3. DESIGN OF HONEYPOT FOR WEB AP-
PLICATION

Our grand goal is to develop a novel honeypot system for
web applications. In order to discover new vulnerability of
web applications, honeypot systems facilitate to collect new
attack methodology.

Through the survey described in section 2, we define the
following abilities that honeypot systems for web application
should equip.

• Luring ability
Due to the nature of honeypot, the system must be
attractive for attackers.

• Protection ability
The system must equip protection capability against
the attacks. Containment must be work for preventing
the abuse of the systems.

• Deception ability
The system must have deception capability, in other
words, attackers cannot distinguish that their targeted
system is honeypot.

In the context of the honeypot systems for web applica-
tions, we decide to employ high-interaction server-type hon-
eypot systems. Since web attacks often require to login to
web applications before their execution, the low-interaction
honeypots are required to emulate many web applications.
It might be tedious, because this task is equal to make the
clone of the targeted application.

This paper designs our honeypot system as shown in Fig-
ure 1. In order to meet the luring requirements, it employs
the actual web applications. A router normally directs to
all web requests to the real web server. However, when sus-
picious web requests are detected, the router directs to the

requests to the honey web server. This can meet the pro-
tection requirements hence the attacks must not be harm to
the real web server.

The most difficult point is that a honey web server must
have the same state to a real server. In other words, the
honey server is required to have the same memory of the
real server regarding to the login state, as well as files of
web content including applications. Assuming if the attacker
needs to login to web applications before his attacking. Since
his login process is not different to the normal one, this
procedure might be done in the real server. After completing
login, he sends suspicious requests to the system, and the
requests are directed to the honey web server by the router.
To deal with such request for the honey web server, the
server must know his login state as same as the real server.
Otherwise, the honey server may return some error messages
to the attacker; the attacker can have a chance to be aware
of that they are quarantined to the honey systems. It cannot
meet the deception requirement.

In order to meet the deception requirement, we decided
to experiment with migration techniques. They enable a
virtual machine to be physically moved from one physical
machine to another in a transparent way [5]. It also enables
to create the complete memory and storage copy of the real
web servers.

While using the migration technique to the honeypot,
there still remains such problems that determination of sus-
picious requests, direction of suspicious requests, prevention
of data leakage, avoidance of data corruption, and migration
in short time period.

For identifying suspicious requests, the likelihood of being
an attack, which can be calculated by the heuristics-based
WAF, is useful. This is just a case, but if there is slight
possibility of the attack, the router in Figure 1 can direct
to the honey web server. Even the normal transaction is
directed to the honey server, it must not be lost because
the honey server can observe the transaction. Due to the
honey server has the same state of the real server, it must
not penalize normal users’ convenience.

Since the migrated virtual machine has the same mac and
IP address of the real servers, it must be considered for the
direction of the suspicious request. Aside from the tradi-
tional routers, the modern packet forwarding systems such
as OpenFlow and/or LISP routers can forward requests re-
gardless of addresses. Besides, LISP is available for directing
attack traffic to decoy server [21]. In corporation with the
heuristics-based WAF, it can forward suspicious requests to
the honey web server.

In order to prevent data leakage, it can be considered
to separate databases for real and honey web servers. The
real database has entire tables and records, and the honey
database has limited tables and records that are related
to the user who logged in to the web applications. While
the honey database should not contain the records to other
users, the risk of data leakage might be thwarted.

The missing pieces are avoidance of data corruption and mi-
gration in short time period. This paper focuses on develop-
ment of the system in corresponding to these two problems.

4. DEVELOPMENT OF INTERCEPT
In our study, we setup Ubuntu 13.04, Kernel-based Vir-

tual Machine modules to two physical machines; their speci-
fications are shown in Table 2. We have modified QEMU [4]

Table 2: Specification of Physical Machines

Sender PC Receiver PC
CPU Intel(R) i7-3610QM Intel(R) i5-2450M

2.30 GHz 2.50 GHz
Memory 8 GB 4 GB

Disk 1 TB ATA 500 GB ATA
NIC RealTek RTL-8169 RealTek RTL-8169

(Gigabit Ethernet) (Gigabit Ethernet)

source codes. Due to the nature of migration techniques,
a migration-source VM will power off to prevent a possible
data corruption. Whenever our implement continues to run
a source VM after migration, both suppression of the state
change in the VM and prevention of the data corruption are
necessary.

In order to keep source VM running after migration, we
modified the state of source VM will be changed when vm_
stop_force_state() and runstate_set() are called via
migration.c. It works fine, so the rest of problem is the
data corruption.

At first, we used Full Live Block Migration (FLBM) for
preventing data corruption. FLBM supports the entire disk
copying, therefore, the source VM and destination VM have
respectively their own virtual disk images. It enables that
the source and destination VM have the same content in
entire memory and block devices as well as avoiding data
corruption. However, FLBM requires a lot of time due to
the copying full disk images during migration procedure. It
might not be good solution for honeypot, because an at-
tacker would feel something is not normal.

Different from FLBM, it was feasible to use of Incremental
Live Block Migration (ILBM). In the “incremental” mode,
only the blocks that were modified are migrated. QEMU’s
disk image utility supports to create a snapshot image file.
Instead of FLBM, ILBM can dramatically reduce the time
during live migration, but it still needs couple of time; it can
be assumed that these times are required for verifying disk
consistency and for memory migration.

In order to reduce the time for verifying disk consistency,
we tested LiveBackup [25] and DriveBackup [28]; the for-
mer enables the destination VM periodically polls the source
VMs to the data which might be backup, and the latter en-
ables to push the data from the source VM to the destination
VM. However, these tools are designed for backup, due to
that they only work when the source VM is surely powered
off. If the source VM kept running, we confirmed that the
data corruption or critical system failure occurred.

Instead of using backup tools, we observed that combina-
tion of NFS and advanced multi layered unification filesys-
tem(AUFS) [17] worked fine. AUFS is a implementation
of Union File Systems, which provides the function, called
branch, to unite several directories into a single virtual filesys-
tem. Based on the solution, we conducted our experiment
as follows.

1. Setup snapshot image files
In order to reduce the further copy-on-write process,
we decided to use snapshot. Besides to this, the source
physical machine (PM) and the destination PM have
the same base image file for the snapshot image file,
and use the base image file to the same directory path
in the physical machine. For example, if the destina-

� �
./qemu-system-x86_64
-drive file=/nfs/debian-kvm001.qcow2,if=virtio
-boot d -enable-kvm -monitor stdio -vnc :0

(qemu) migrate -d kemari:tcp:192.168.1.2:4444� �
(a) Sender (192.168.1.1)

� �
./qemu-system-x86_64
-drive file=/nfs/debian-kvm001.qcow2,if=virtio
-boot d -enable-kvm -monitor stdio -vnc :0
-incoming kemari:tcp:0:4444

kill -256 (pid)� �
(b) Receiver (192.168.1.2)

Figure 2: Demonstration of INTERCEPT system

ILBM LMM+AUFS INTERCEPT

0
5

10
15

20

(a) 20MB Snapshot

ILBM LMM+AUFS INTERCEPT

0
5

10
15

20

(b) 50 MB Snapsthot

ILBM LMM+AUFS INTERCEPT

5
10

15
20

25

(c) 100 MB Snapshot

ILBM LMM+AUFS INTERCEPT

40
45

50
55

60

(d) 500 MB Snapshot

Figure 3: The average turnaround time in the cases of Incremental Live Brock Migration(ILBM), Live Memory Migration
with AUFS (LMM+AUFS), and Kemari-based Live Memory Migration with AUFS (INTERCEPT).

tion PM puts the base image file into /root directory,
the source PM also puts the base image file into /root.

2. Sharing snapshot
The source PM creates the snapshot and place the file
into NFS server. The destination PM mounts the the
NFS server as a read only file systems, and config-
ure AUFS directory. For example, a NFS server ex-
ports /nfs directory and the destination PM mounts
the place as a read-only file system, e.g, /ronfs. The
PM then mounts /nfs as an AUFS system, in which
/ronfs is a read only directory and any other direc-
tory, e.g., /tmp is a writable directory.

Instead of ILBM, this methodology employs copy-on-write
to keep consistency of the VM disk image files between the
source and destination VMs. We observed that the copy-
on-write process will be started after the memory migration
finished.

Finally, we employ Kemari [16] for reducing the time for
memory migration. Kemari provides the feature of the fault
tolerance for KVM, and makes the memory migration to be
done in the background. The feature also enables the reduc-
tion of the time for migrating memory in INTERCEPT.

Therefore, our prototype implementation is developed by
modifying the latest version of Kemari. The figure 2 demon-
strates how INTERCEPT works for the sender and the re-
ceiver VMs. The sender (physical machine) runs the VM
as shown in Figure 2a and the receiver also runs the VM
as shown in Figure 2b with enabling Kemari’s fault toler-
ant feature. The sender also starts the fault tolerant mi-
gration via sender’s QEMU monitor console with specify-
ing the IP address of the receiver. In the case of Kemari,

the sender VM still runs after finishing migration; the re-
ceiver VM does not start, but is suspended. After the re-
ceiver VM starts, the sender disables the fault tolerant fea-
ture and stops the sender VM by calling vm_stop(0) from
migrate_ft_trans_error() function in migration.c. As
we mentioned above, we comment out the vm_stop() func-
tion not to power-off the VM. In addition, we also modify the
receiver for remotely starting the VM. Instead of inputting
command in the receiver’s console, INTERCEPT accepts
the signal for launching the VM, as shown in Figure 2b.

5. EVALUATION
The requirements of the INTERECEPT were avoidance

of data corruption and migration in short time period. The
section show the detail conditions of the preliminary evalu-
ation in which we used two physical machines as shown in
Table 2.

This evaluation employed three strategies for launching
a honey server, namely Incremental Live Block Migration
(ILBM), Live Memory Migration (LMM) with using AUFS
for copying block devices, and INTERCEPT, our modified
version of Kemari with AUFS. We also prepared four types
of snapshot images, whose size were 20, 50, 100, and 500
MegaBytes (MB) in respectively. Note that 20 MB is the
minimum size for the snapshot image file in our experiment.

Based on the above conditions, we measured the time for
launching virtual machines. For the cases of LMM with
AUFS and INTERCEPT, we compared the timestamp of
the snapshot images created by copy-on-write with the time
which started the migration. As for the case of ILBM, we
manually measured the turnaround time by calculating from
the started time and the completed time. The results are

summarized in Figure 3a, 3b, 3c, and 3d, where x axis de-
notes three cases, and y axis denotes the turnaround time
while creating honeypot. Note that our x axis range for each
box graph is limited to the 20 seconds, for readability.

When the disk size was 20 MB, we observed that the mini-
mum average of the turnaround time was 2.00 seconds in the
case of INTERCEPT, followed by LMM with AUFS (11.72)
and finally ILBM (14.90). In order to compare the responses
in a less biased way, we performed Analysis of Variance
(ANOVA) and Welch’s t-test (p < 0.05) for INTERCEPT
and ILBM, and the result showed that there was statistical
difference between the two turnaround times in between IN-
TERCEPT and ILBM (p ≒ 1.40E − 32(< 0.05), ν = 18). In
addition to the INTERCEPT and LMM with AUFS, there
also found statistical difference (p ≒ 7.62E−33(< 0.05), ν =
18).

Even if the disk size was 500 MB, the minimum average
of the turnaround time was 43.23 seconds in the case of
INTERCEPT, followed by LMM with AUFS (53.22) and
finally ILBM (56.51). According to our ANOVA results,
we performed Student’s t-test (p < 0.05) for INTERCEPT
and ILBM and found the statistical difference (p ≒ 3.78E−
16(< 0.05), ν = 11.86). There was also statistical difference
between INTERCEPT and LLM with AUFS (p ≒ 4.00E −
23(< 0.05), ν = 18).

We also verified whether or not the data corruption oc-
curred, and observed that there was no data corruption in
all cases. Aspect from these observations, INTERCEPT
succeeded to meet our requirements, avoidance of data cor-
ruption and migration in short time period. However, we
also found that the turnaround time increases if the snap-
shot file size became bigger. We will discuss this problem in
section 6.2.

6. DISCUSSION

6.1 Collection of attacks
Our motivation is to collect the information related to

cyber attacks toward web applications using the honeypot.
This section explains about the content of the information.

As shown in Figure 1, our concept contains detecting a
suspicious request, creating a honey web server, preparing
honey database, directing the request to the created server,
and observing the behavior. Imagine if the request can be
detected attacks without doubt. When the attack was well
known and contained particular phrases that cause injec-
tion attacks, the rule-based detection can identify that the
request is determinately attack. In this case, the informa-
tion of the attack is not so new.

Aside from the well known attacks, we want to analyze
suspicious attacks with honeypot. As we mentioned in sec-
tion 1, heuristics-based methods calculate the likelihood of
being a malicious code and compare the likelihood with the
defined discrimination threshold. Assuming if the calculated
score 0 means benign and 1 means attacks, and sore 0.5 is the
threshold. For example, given calculated score 0.9 (> 0.5),
it would be detected as attack rather than benign. However,
even if the calculated score is 0.1, it might contain some sus-
piciousness. By observing the activity during the request,
we considered that there is a potential chance for collecting
new cyber threats.

Due to the fear of false positive, which is to label benign
request as attack, a suspicious request might not be blocked.

Instead, our approach seamlessly quarantines the suspicious
request to the honey web server. Even if the false positive
occurred, the service for the benign user of the web appli-
cation would be continued without losing any convenience
when following two conditions are met: (i) the honey web
server has the same memory and disk information of the real
servers, and (ii) the honey database equips the information
that used by this benign user. If the honey database has
limited tables and records that are related to the user who
logged in to the web applications, as we explained in sec-
tion 3, INTERCEPT might not penalize users’ convenience
even if the false positive error occurred.

6.2 Deception ability
This section explains about deception ability. We devel-

oped INTERCEPT to create a perfect copy of environment
for web applications based on virtualization techniques. To
the best of our knowledge, it would be difficult that honey
web server has the same memory of the real web server,
including TCP session state and web application session in-
formation, without using VM.

The remain issue is time for creating the copy of VMs. If
it requires a lot of times, remote attackers will be aware of
unusual or strange behavior of the web servers.

Our INTERCEPT was designed to reduce the time for
migration; use of Kemari and its fault tolerant feature to
reduce the time for memory migration, and use of AUFS
and its copy-on-write feature for live block migration. The
rest of time is the time for copy-on-write in AUFS. The
creation time increases when the size of the snapshot disk
image file becomes larger. The periodical “re-basing”, the
procedure of merging the base and the snapshot, might be
necessary to keep the size of the snapshot to be reasonable.

The other solution is that use of rapid migration tech-
niques. INTERCEPT needs replicate the VM instance rather
than migration, so we need to carefully choose the suitable
techniques to avoid data corruption. As well as as Kemari’s
fault tolerant functions, which do memory migration in the
background manner, the fault tolerant functions for block
disk image might be feasible. Actually, cloud storage tech-
niques such as GlusterFS [9] and/or Sheepdog [23] have the
fault tolerant features and replicate the disk images in the
storage network. By modifying their replication functions,
there is possibility for creating the perfect copy of VMs in
very short time period even if the disk size is large.

Toward development of honeypot for web applications,
INTERCEPT needs to interconnect to other modules, namely
determination modules for suspicious requests and direction
modules for them. On the integration of INTERCEPT and
these modules, it needs to define the temporal requirements.
The required time for detection, direction and preparation of
honeypot might be calculated along with each requirement,
but it is beyond the scope of this paper.

7. CONCLUSION
The paper introduced INTERCEPT, the core component

of the honeypot for web applications. To meet the require-
ments of the honeypot, we explored the suitable solution
and discovered the missing piece, which can avoid the data
corruption as well as finishing the migration in short time
period. While we employed server-type and high-interaction
as a honeypot architecture, the honeypot system created the
perfect copy of the actual system. Hence the honeypot had

the same memory and disk content of the actual system, web
attackers would not be aware of that they were directed to
honeypot even they checked any TCP and/or web sessions.

We also surveyed several solutions of virtual machine en-
vironments and developed our own virtual machine systems.
At first, we chose QEMU and modified its source codes, and
used the incremental live block migration for creating honey
web server. Next, we employed AUFS instead of using in-
cremental live block migration in order to reduce the time
for completing live block migration. Finally, we modified
Kemari and its fault tolerance feature, to reduce the time of
the memory migration. We also observed that the creation
of the honey web server could be done in few seconds when
the size of the snapshot was reasonable.

The rest of work is to improve the performance of our de-
veloped INTERCEPT. We will also integrate the INTER-
CEPT into other modules that can detect suspicious re-
quests and direct the requests to the honeypot systems.
There still remains the problem, i.e., the difference of the
temporal requirements, but we will develop the suitable hon-
eypot for web applications regarding to the rapid migration
techniques in our future work.

Acknowledgment
This research has been supported by the Strategic Interna-
tional Collaborative R&D Promotion Project of the Ministry
of Internal Affairs and Communication, Japan, and by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 608533 (NECOMA). The
opinions expressed in this paper are those of the authors and
do not necessarily reflect the views of the Ministry of Inter-
nal Affairs and Communications, Japan, or of the European
Commission.

8. REFERENCES
[1] Akiyama, M., Iwamura, M., Kawakoya, Y., Aoki,

K., and Itoh, M. Design and Implementation of
High Interaction Client Honeypot for
Drive-by-Download Attacks. IEICE Transactions 93,
B(5) (2010), 1131–1139.

[2] Andrews, M. Web Security 101 - introduction. Tech.
rep., McAfee, 2008.

[3] Baecher, P., Koetter, M., Holz, T., and
Dornseif, M. The Nepenthes Platform: An Efficient
Approach to Collect Malware. In Proceedings of the
9th International Symposium On Recent Advances In
Intrusion Detection (Sep 2006).

[4] Bellard, F. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the USENIX Annual
Technical Conference (Apr 2005), pp. 41–46.

[5] Clark, C., Fraser, K., Hand, S., Hansen, J. G.,
Jul, E., Limpach, C., Pratt, I., and Warfield, A.
Live Migration of Virtual Machines. In Proceedings of
the 2nd Symposium on Networked Systems Design and
Implementation (May 2005).

[6] Cohen, F. Deception Toolkit. Available at:
http://www.all.net/dtk/index.html.

[7] Cook, S. A Web Developer’s Guide to Cross Site
Scripting. Tech. rep., The SANS Institute, Jan 2003.

[8] Dermann, M., Dziadzka, M., Hemkemeier, B.,
Hoffmann, A., Meisel, A., Rohr, M., and
Schreiber, T. Best Practices: Use of Web

Application Firewalls. Tech. rep., The Open Web
Application Security Project, 2008.

[9] Gluster, Inc. GlusterFS. Available at:
http://www.gluster.org.

[10] Kim, I. M. Using Web Application Firewall to detect
and block common web application attacks. Tech.
rep., The SANS Institute, Nov 2011.

[11] Lin, K., Kyaw, L., and Gyi, P. Hybrid Honeypot
System for Network Security. World Academy of
Science, Engineering and Technology 24 (2008),
266–270.

[12] Mairh, A., Barik, D., Verma, K., and Jena, D.
Honeypot in Network Security - A Survey. In
Proceedngs of the International Conference on
Communication, Computing & Security (Oct 2011),
pp. 600–605.

[13] McDonald, S. SQL Injection: Modes of Attack,
Defence, and Why It Matters. Tech. rep., The SANS
Institute, Apr 2002.

[14] MITRE. Honeyclient Project.
[15] Nmap. Free security scanner for network exploration

& security audits. Available at: http://nmap.org/.
[16] Ohmura, K., and Moriai, S. Kemari Project.

Available at: http://www.osrg.net/kemari/.
[17] Okajima, J. R. Advanced multi layered unification

filesystem. Available at:
http://aufs.sourceforge.net.

[18] OWASP. OWASP Top 10 for 2013 - The Ten Most
Critical Web Application Security Risks. Tech. rep.,
The Open Web Application Security Project, 2013.

[19] Pouget, F., and Holz, T. A Pointillist Approach
for Comparing Honeypots. In IEEE Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment (Jul 2005).

[20] Purcell, J. Web Based Attacks. Tech. rep., The
SANS Institute, 2007.

[21] Saito, T. Proposal of DDoS attack mitigation using
two-step map table lookup on LISP. Master’s thesis,
Nara Institute of Science and Technology, Feb 2013.
(in Japanese).

[22] Seifert, C., Welch, I., and Komisarczuk, P.
HoneyC-The Low-Interaction Client Honeypot. Tech.
rep., Victoria University of Wellington, 2006.

[23] Sheepdog Project. Sheepdog Project. Available at:
http://sheepdog.github.io/sheepdog.

[24] Spitzner, L. Honeypots: Tracking Hackers, 1st ed.
Addison Wesley, 2002.

[25] Sundar, J. Livebackup - A Complete Solution for
making Full and Incremental Disk Backups of
Running VMs. Available at:
http://wiki.qemu.org/Features/Livebackup.

[26] The Client Honeynet Project. Capture-HPC.
Avaiable at: http://client-honeynet.org/.

[27] The Monkey-Spider project. Monkey-Spider.
Availabel at:
http://monkeyspider.sourceforge.net/.

[28] Wolf, K. block: drive-backup live backup command.
Available at: http://lists.nongnu.org/archive/
html/qemu-devel/2013-06/msg04448.html.

[29] Zalewski, M. p0f. Available at:
http://lcamtuf.coredump.cx/p0f.shtml.

