
Hashdoop: A MapReduce Framework for Network
Anomaly Detection

Romain Fontugne∗†, Johan Mazel∗†, Kensuke Fukuda∗
∗National Institute of Informatics

†Japanese - French Laboratory for Informatics
Tokyo, Japan

Abstract—Anomaly detection is essential for preventing net-
work outages and maintaining the network resources available.
However, to cope with the increasing growth of Internet traffic,
network anomaly detectors are only exposed to sampled traffic,
so harmful traffic may avoid detector examination. In this
paper, we investigate the benefits of recent distributed computing
approaches for real-time analysis of non-sampled Internet traffic.
Focusing on the MapReduce model, our study uncovers a funda-
mental difficulty in order to detect network traffic anomalies
by using Hadoop. Since MapReduce requires the dataset to
be divided into small splits and anomaly detectors compute
statistics from spatial and temporal traffic structures, special care
should be taken when splitting traffic. We propose Hashdoop, a
MapReduce framework that splits traffic with a hash function
to preserve traffic structures and, hence, profits of distributed
computing infrastructures to detect network anomalies. The
benefits of Hashdoop are evaluated with two anomaly detectors
and fifteen traces of Internet backbone traffic captured between
2001 and 2013. Using a 6-node cluster Hashdoop increased
the throughput of the slowest detector with a speed-up of 15;
thus, enabling real-time detection for the largest analyzed traces.
Hashdoop also improved the overall detectors accuracy as splits
emphasized anomalies by reducing the surrounding traffic.

I. INTRODUCTION

Identifying attacks in a network infrastructure is a crucial
task to prevent network outage and maintain network resources
available to legitimate users. Overwhelmed by the increasing
amount of IP traffic, network operators rely on anomaly
detectors to automatically identify harmful events that occur
on networks. Unsupervised detection techniques are especially
attractive as they require no prior knowledge and are easier
to deploy. However, to cope with global Internet growth and
obtain detector results in a reasonable time frame, the analyzed
traffic is usually sampled [3], which is inherently detrimental
to anomaly detection as it deliberately discards traffic that may
be anomalous.

Motivated by the need for analyzing large datasets, various
research communities have developed efficient tools that use
the MapReduce model [5]. In this paper, we investigate the
benefits of MapReduce to achieve real time anomaly detection
with non-sampled traffic. Furthermore, available implemen-
tation such as Hadoop MapReduce [15] provides scaling
capabilities and fault tolerance that are crucial features for
Internet security.

Nonetheless, we found fundamental contradictions between
Hadoop data distribution and anomaly detectors requirements.
In the MapReduce model, data is conceptually record-oriented;
consequently, Hadoop divides datasets into splits, i.e., subsets

of records, and distributes them in a cluster to be independently
processed. Splits of a dataset have all the same size to ensure
that the processing end time for all nodes coincides. In the case
of network traffic, a split usually represents a subset of packets
[10]. However, related packets may spread across different
splits, thus dislocating traffic structures that are essential
for anomaly detectors. For example, anomaly detectors can
identify DoS attacks because of the numerous requests sent to
the same service, but detecting this kind of attack with only a
subset of the requests is notably more difficult.

To overcome this, we take advantage of a hash function to
divide traffic into splits that preserve the spatial and temporal
traffic structures. Therefore, we propose Hashdoop, a MapRe-
duce framework that splits data with a hash function and pro-
cesses numerous anomaly detectors in parallel. The proposed
framework conserves all advantages of the MapReduce model
and can virtually be used with any network traffic anomaly
detector. We conduct experiments with traffic measured at a
trans-Pacific link and two anomaly detectors, a packet count
based detector, and a traffic stationarity based detector called
“Astute” [14]. Using a local 6-node cluster Hashdoop achieves
a maximum speed-up of 3.5 with the packet count based
detector and 15 with Astute. In other words, the packet count
based detector throughput was improved from 360k packets
per second (pps) to 1.27 Mpps, and, for Astute, from 25
kpps to 375 kpps. Consequently, a 900-second trace that was
analyzed in 1296 seconds with the classical version of Astute
was processed in 216 seconds on Hashdoop, thus enabling
real-time processing for this detector. Using Hashdoop, we
also observed an overall improvement in detector accuracy as
anomalies are filtered in splits with less background traffic.

II. BACKGROUND

A. Anomaly Detection

Despite the numerous detection methods proposed during
the last decade, the approach to identify network traffic anoma-
lies is generally common to all detectors and consists of three
main steps: traffic discretization, normal traffic modeling, and
anomaly detection.

1) Spatial and temporal discretization of traffic consists
in aggregating traffic in flows and partitioning time
in nominal intervals. Various definitions of flows are
available in the literature, ranging from the traditional
5-tuple flow (protocol, source host, destination host,
source port, and destination port) to a coarser view of



2

C
R

C

M
a
p
p
e
r 

3

Original Traffic

R
e
d
u
ce

r 
1

R
e
d
u
ce

r 
3

M
a
p
p
e
r 

2
M

a
p
p
e
r 

3

R
e
d
u
ce

r 
2

Traffic Hashing Anomaly Detection 

Detector

Hashed Traffic Alarms
Final

Report

Host A, Port p

Host A, Port p

Host B, Port p

Host A, Port p
Host B, Port pØ

R
e
d
u
ce

r

M
a
p
p
e
r 

1

C
R

C

M
a
p
p
e
r 

1

C
R

C

M
a
p
p
e
r 

2

C
R

C

M
a
p
p
e
r 

4

C
R

C

M
a
p
p
e
r 

5

Detector

Detector

Fig. 1: Overview of Hashdoop. In this example, the original trace contains 5 splits that are hashed in N = 3 buckets. Each
bucket is independently analyzed by a detector and all detectors results are summarized in the anomaly report. Note that here
traffic is hashed only once for clarity but in fact Hashdoop produces 2N buckets for source and destination hashes.

traffic using only port number [2], [12], host address
[6], or origin-destination flow [9].
Usually, time is partitioned by using a sliding window
or time bins.

2) Normal traffic modeling is the statistical analysis
of discretized traffic aimed at uncovering the usual
behavior of traffic and computing a normal reference.
Being the hardest step of the three, the research com-
munity has experimented with numerous approaches
to model normal traffic, for example, using princi-
pal component analysis [9], entropy [12], gamma
modeling [6], Kullback-Leibler divergence [2], image
processing [8], or equilibrium model [14].Note that
traffic is hashed only once for clarity. We stress that
these statistical tests are usually relevant only if there
are enough flows per bin and the number of bins is
sufficient.

3) The last step compares a sample flow with the com-
puted normal reference and classifies it as normal or
anomalous. This is usually achieved with simple, yet
robust, thresholding techniques [2], [6], [8], [9], [12],
[14].

Implementing this general approach with MapReduce is
not trivial as the traffic discretization and MapReduce data
splitting might interfere.

B. MapReduce

MapReduce is a programming model designed to process
large a dataset by using a cluster of computers. A MapReduce
program is composed of two key procedures, map and reduce,
that are executed on a cluster where each node carries splits
of the dataset. Thereby, all splits are independently processed
by numerous concurrent mappers; then, the mappers results
are shuffled, sorted, and passed to the reducers that digest
them into the final results. A MapReduce program is therefore
inherently parallel and can greatly decrease the computational
time when processing huge datasets.

The MapReduce implementation of a network traffic
anomaly detector is fairly straightforward. The map proce-
dure detects anomalies in a split, and the reduce procedure

summarizes all anomalies detected. Nevertheless, particular
care should be taken when dividing traffic into smaller splits.
Usually, the dataset is sliced into consecutive fixed-size-splits,
but in the case of packet traces, this simple slicing creates
splits, i.e., sets of packets, with two undesirable properties.
First, the time duration of the traffic is dramatically decreased
and varys along with the packet rate of the captured traffic.
Second, related packets, e.g., packets from the same flow, can
span over several splits.

As explained above, anomaly detectors perform temporal
discretization of the traffic by using binning or sliding win-
dows. However, fixed-size slicing significantly shortens the
time duration of the traffic analyzed by a mapper; thus, it
dramatically reduces the number of times bins are used for
the statistical analysis and prevents detectors from properly
modeling the normal traffic.

Furthermore, distributing traffic sent or received by the
same host into several splits can weaken distinctive features of
anomalies and make them unidentifiable. For example a net-
work scan is a sequence of tentative connections characterized
by a typical spatial distribution; it is particularly difficult to
detect if the sequence is broken up into smaller parts.

III. METHODOLOGY

We propose a novel MapReduce framework that consists
of two steps: First, using a hash function, the traffic is divided
into splits where both the spatial and temporal structures of
the traffic are preserved. Second, detectors identify anomalies
in each split of data. The anomalies are then collected and
reported to network operators. As shown in Figure 1, these two
steps are implemented as two distinct MapReduce programs.

A. Traffic Hashing

To overcome the two problems stated in the previous
section, we longitudinally slice traffic traces with the hash
function. Using IP address as the key for the hash function
allows us to divide traffic in splits (hereafter called “buckets”)
while preserving the time duration and flow consistency. In
fact, the traffic is hashed twice, once with the source IP address



3

as the key and once with the destination IP address as the key,
thus assuring that the traffic sent or received by a certain host
falls in a single bucket. The hash function we use is the cyclic
redundancy check (CRC) algorithm, which is commonly used
for traffic load balancing [4].

Suppose that a packet trace is distributed on several nodes
by using the classical fixed-size-split and N is the number of
buckets per hash function. Then, the traffic is hashed by using
the following map and reduce procedures.

1) Map: For each packet p in a split, the map com-
putes two hashes, hs = CRC(srcIP ) mod N and hd =
(CRC(dstIP ) mod N) + N , where srcIP and dstIP are
respectively the source and destination IP address for the
packet p. Thereby, the map outputs two key-value pairs, where
the key is composed of a hash (hs or hd) and the timestamp
of p, and the value is the packet p.

2) Shuffle and Reduce: Using the keys of all mappers
outputs, the shuffle separates packets into 2N buckets, and
within each bucket, sorts packets chronologically.

The reduce procedure reads a single bucket, and, regardless
its size, writes it to the file system as a single split. Hence,
reducers on different nodes can concurrently process all buck-
ets, store them evenly on the cluster, and ensure that a bucket
is not divided into smaller splits.

B. Anomaly Detection

Using traffic hashing makes the MapReduce implementa-
tion of a network traffic anomaly detector fairly straightfor-
ward. The map procedure implements the anomaly detection
for a single bucket, and results for all buckets are summarized
by the reduce procedure. The key advantage of Hashdoop is
that virtually any classical anomaly detector can be used for
the map procedure.

1) Map: We experimented with two anomaly detectors for
the map procedure, a simple packet count based detector and
Astute [14], an anomaly detector monitoring traffic stationarity.

The packet count based detector reports hosts that are
sending or receiving significantly more packets than other
hosts. Let c̄ be the mean number of packets sent or received by
hosts in a bucket and s the corresponding standard deviation;
then, hosts with a packet count c, such that

c > c̄+ τs

, are reported as anomalous. τ is an arbitrary threshold set at
3 in our experiments.

On the basis of an equilibrium model, Astute seeks flows
that violate the traffic stationarity. Astute inspects the traffic
by using time bins and six different levels of flow aggregation
and reports a significant shift in the number of packets or bytes
for two consecutive time bins. The shift between the time bins
i and i+ 1 is measured with the following equation.

K ′
i =

δ̂i
σ̂i

√
F

, where δ̂i and σ̂i are respectively the mean and the standard
deviation of the volume changes for the F flows present in the
time bins i and i+ 1. The time bin i is said to be anomalous

if its shift exceeds a certain threshold K, |K ′
i| > K. This

threshold controls the false positive rate and is set to 3 in our
experiments.

Both map procedures report alarms in the form of a key
composed of six values, the source and destination IPs, source
and destination ports, and starting and ending time of the
anomalous traffic, and can contain wildcards for unspecified
values. This unified output allows us to implement the same
reduce procedure for both detectors.

2) Reduce: The goal of the reduce procedure is to com-
pile and report detected anomalies to the network operators.
Thereby, the reducer collects all alarms reported by the map-
pers, digests alarms reporting the same traffic, and produces
the final anomaly report.

IV. EVALUATION

We now evaluate the advantages and shortcoming of Hash-
doop to provide real-time network traffic anomaly detection.
We investigate two key elements that are, first, the overheads of
traffic hashing and MapReduce, as compared with the benefits
of parallel computing (Section IV-B), and second, the impact
of traffic hashing on the detection performance of anomaly
detectors (Section IV-C).

A. Hadoop Cluster and Dataset

The proposed framework was evaluated using a local
Hadoop testbed of six nodes connected with 1-Gigabit Ether-
net. Nodes ranged from commodity workstations with a single
quad-core processor and 8 GB of RAM to higher specification
servers with two 8-core processors and 64 GB of RAM. This
6-node cluster ran Hadoop 2.0.0 with a split size of 64 MB,
a replication factor of 3, and was configured to concurrently
process up to 128 mappers or 92 reducers.

The traffic traces analyzed in these experiments are all from
the MAWI traffic archive1 and, more precisely, traffic captured
at a trans-Pacific link between Japan and U.S. (samplepoint-
B and samplepoint-F). This was originally an 18-Mbps link
(CAR on 100 Mbps) and was updated to 150 Mbps in July
2006. In our experiments, we analyzed traffic traces captured
from 14:00 to 14:15 JST on the 15th of January, February, and
March in 2001, 2004, 2007, 2010, and 20132. We converted
the pcap MAWI trace in a textual format by using Ipsumdump
to ease the manipulation of these files on Hadoop. These traces
contain only an IP header and port information, and no payload
is kept in the MAWI archive. As shown in Table I the volume
of captured traffic has considerably increased over the past 13
years; hence, the number of packets captured in 2010 is about
10 times higher than in 2001. This traffic growth allows us to
inspect the scalability of the proposed method.

B. Processing Time

The total execution time for Hashdoop is the sum of the
time spent hashing the traffic and processing the anomaly
detection.

1http://mawi.wide.ad.jp/mawi/
2Due to intensive experiments polluting the traffic in February 15th 2013,

traffic from February 16th 2013 was analyzed instead.



4

2 4 8 16 32 64 128 256 512
Number of Buckets

0

50

100

150

200

250

E
xe

cu
ti

o
n
 T

im
e
 (

se
co

n
d
s)

2001

2004

2007

2010

2013

(a) Mean execution time for traffic hashing

2 4 8 16 32 64 128 256 512
Number of Buckets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
-u

p

m
a
p
p
e
rs

lim
it

2001

2004

2007

2010

2013

(b) Speed-up for packet count based detector

2 4 8 16 32 64 128 256 512
Number of Buckets

0

2

4

6

8

10

12

14

16

S
p
e
e
d
-u

p

m
a
p
p
e
rs

lim
it

2001

2004

2007

2010

2013

(c) Speed-up for Astute

Fig. 2: Execution time for traffic hashing and anomaly detector speed-up with Hashdoop

Traces
2001 2004 2007 2010 2013

Avg. nb. pkt. 2.9M 4.3M 17.7M 32.1M 25.5M

R
el

at
iv

e
St

d.
D

ev
. 4 buckets 27% 30% 13% 26% 28%

8 buckets 26% 17% 12% 24% 23%
16 buckets 33% 24% 15% 30% 31%
32 buckets 41% 32% 21% 38% 40%
64 buckets 51% 43% 28% 49% 52%
128 buckets 65% 56% 37% 62% 68%
256 buckets 83% 73% 48% 79% 87%
512 buckets 106% 96% 63% 102% 112%

TABLE I: Average number of packets for original 15-minute
traces and relative standard deviation of number of packets in
buckets

1) Traffic Hashing: For traffic hashing, the time required
to execute the map and reduce procedures is mainly bounded
to three values: the size of the trace, Hadoop’s split size,
and the number of buckets per hash function. The number of
mappers hashing the traffic is proportional to the size of the
trace and Hadoop’s split size, i.e., 64 MB in these experiments.
For example, the smaller trace of our dataset (15/02/2001)
accounts for 177.5 MB or 3 Hadoop’s splits thus processed
with 3 mappers, whereas the largest one (15/02/2010, 2.0 GB)
occupies 33 splits processed by 33 concurrent mappers. The
number of reducers writing buckets to the filesystem, however,
is proportional to the number of buckets N . Because Hashdoop
hashes the traffic twice, i.e. using the source IP addresses and
the destination IP addresses, the number of required reducers
to process them is 2N .

Figure 2a depicts the average time measured to hash the
15 analyzed traces by using various values for the number of
buckets, N ∈ [2, 512]. With N = 2 the average processing
time for traces from 2010 to 2013 was about 4 times higher
than that for traces from 2001 to 2004. However, with higher
values of N , the processing time for traces from 2010 to 2013
rapidly decreased and accounts for 2 times that of traces from
2001 to 2004 with N = 64. Overall, the fastest processing
time was achieved with N = 8 for traces from 2001 to 2004
and N = 64 for traces from 2007 to 2013, meaning that large
traces can benefit from more mappers and reducers to quickly

hash traffic.

2) Anomaly Detection: We measured the execution times
of the anomaly detectors to entirely process each trace on a
standalone computer (two 6-core processors and 12 GB of
RAM) and compared them with the processing times of the
detectors by using Hashdoop on our cluster. The execution
times with the standalone computer reveal that the packet
count based detector is an order of magnitude faster than
Astute. Namely, the packet count based detector has an average
throughput of 360k packets per second (pps), whereas Astute
processes about 25 kpps. Figures 2b and 2c depict speed-up
done using Hashdoop with the two detectors and different
values of N . Here, the number of concurrent mappers, M ,
is directly derived from the total number of buckets, that is,
M = 2N . Therefore, we expect better speed-up with higher
values of N , keeping in mind that the maximum number of
concurrent mappers for our cluster, M = 128, was reached for
N ≥ 64.

However, for the packet count based detector and traces
from 2001 (Fig. 2b) the execution time was at best 2 times
slower than with the standalone computer. This underachieve-
ment highlights the MapReduce overhead, mainly due to the
propagation of the jobs over the cluster [5], and demonstrates
that there is no benefit in analyzing small traces with Hash-
doop. Nevertheless, for larger traces, Hashdoop performs up
to 3.5 times faster than the standalone version, namely, it
processes the 2010 traces with an average throughput of 1.27
Mpps. Interestingly, the best performances were obtained with
N = 16, but for higher values of N , the MapReduce overhead
became more apparent as there were less packets in the buckets
and the mappers quickly completed their tasks.

Since Astute throughput is significantly lower than the
packet count based detector, it requires more resources to
compute the traces and consequently takes better advantage of
MapReduce (Fig. 2c). For example, the analysis of the 2001
traces with the MapReduce version of Astute was about 4
times faster (N ∈ [16, 32]) than the standalone version; thus,
the throughput was raised from 25 kpps to 100 kpps. With
the traces from 2007 and N = 128, we obtained a maximum
speed-up of 15, boosting the Astute throughput to 375 kpps.
This result is interesting for two reasons. One, the maximum
speed-up was reached with N = 128, thus M = 2 ∗ 128



5

mappers, which was above the physical limit of our cluster, and
second, this was done with the traces from 2007 but not with
the traces from 2010 to 2013, which contained more traffic.
The first observation exhibited the limits of our cluster and
suggests that better speed-up for traces from 2007 to 2013
could be attained with more nodes. We investigated the causes
for the second observation and found that traffic in 2007 was
better spread in the buckets than for any other trace. The traffic
distribution in buckets is depicted in Table I with the relative
standard deviation RSD, defined as

RSD =
s

x̄

, where x̄ is the mean number of packets per bucket and s is the
corresponding standard deviation. We observed that the RSD
of traffic captured in 2007 was about 2 times lower than that for
traces from 2010 to 2013, meaning that the size of buckets was
more even for traffic in 2007, whereas, for traffic from 2010
to 2013, a few buckets contained considerably more traffic
than did the others. Since the processing time of a mapper is
proportional to the size of the analyzed bucket, traffic unevenly
distributed in buckets induces a few mappers to consume more
processing time, thus delaying the whole MapReduce process.

Overall, Hashdoop drastically decreased the processing
time for large traffic traces that cannot be analyzed in real-
time with the Astute standalone detector. For example, the
detection with the Astute standalone detector and the 900-
second long traffic traces from 2010 took on average 1296
seconds, whereas, with the MapReduce version and N = 128
buckets, the traffic hashing and the anomaly detection took on
average 216 seconds (100 seconds for traffic hashing and 116
seconds for the detection).

C. Detection Performance

We investigated the impact of the proposed MapReduce
framework on detection performance. Our main interest here
was to determine if traffic hashing rather eases the detection
by isolating anomalies in buckets with less legitimate traffic,
or on the contrary, it inadvertently misleads detectors to report
legitimate traffic as anomalous. We measured the accuracy of
the detectors with Hashdoop and their standalone version by
using MAWILab anomaly reports [7] as ground truth data and
the traditional F-score, defined as:

F =
2TP

2TP + FN + FP
,

where TP , FN , and FP are respectively the number of
True Positive, False Negative, and False Positive alarms. The
detection improvement DI of Hashdoop against the standalone
one is then the difference between their respective F-score,
FMR and FS :

DI = FMR − FS .

Therefore, positive (resp. negative) values of DI indicate that
Hashdoop performs better (resp. worst) than the standalone
version.

Figures 3a and 3b depict the average detection improve-
ment for the packet count based detector and Astute. For traces
in 2001, the proposed framework with either detector achieved
inferior F-scores as compared with those from the standalone
version, and globally, the detection improvement decreased as

2 4 8 16 32 64 128 256 512
Number of Buckets

−0.05

0.00

0.05

0.10

D
e
te

ct
io

n
 I
m

p
ro

v
e
m

e
n
t

2001

2004

2007

2010

2013

(a) Packet count based detector

2 4 8 16 32 64 128 256 512
Number of Buckets

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
te

ct
io

n
 I
m

p
ro

v
e
m

e
n
t

2001

2004

2007

2010

2013

(b) Astute

Fig. 3: Detection improvement (DI) for the detectors with
Hashdoop and various numbers of buckets. Detection improve-
ment is measured as difference between F-measure of classical
detector and that with Hashdoop.

N increased. These poor performances were mainly due to the
small number of packets contained in each bucket, which broke
the detectors statistical assumptions. For traces captured from
2004 to 2013, the detection improvement for both detectors
and almost all traces was greater than zero; nevertheless, both
detectors exhibited different behavior when varying the number
of buckets N .

The detection improvement for the packet count based
detector and traces from 2007 to 2013 gradually improved
as N increased, meaning that splitting these large traces in
buckets emphasizes anomalies hidden in a large traffic volume.
The exception being the traces in 2007, as their average
detection improvement was negative. Inspecting these results
revealed that the standalone detector performed extremely well
for the trace from January 15th, 2007 (FS = 0.88, the highest
score in our experiments) and globally lowered the average DI
for 2007. Results for the 2004 traces were yet different; the
detection improvement reached a maximum for N ∈ [16, 32]
and then decreased as N increased.

Similarly, the detection improvement of Astute for 2004
to 2013 reached a maximum around N = 16. The detection
improvement for 2010 traces stayed reasonably constant for



6

higher value of N ; thus, for N = 128, the average detection
improvement for the 2010 traces was 0.28. The best detection
improvement for Astute was obtained with the 2007 traces;
however, we found that the standalone version of Astute was
performing poorly with these traces, thus emphasizing the
performance of the proposed framework. Overall, we observed
a particularly low detection rate for the standalone version
of Astute, and tuning Astute parameters somewhat improved
its F-score, although the shape of the detection improvement
curves were left unchanged, hence yielding similar results.

V. RELATED WORK

Applications of hash functions have been researched exten-
sively in the networking community. In the area of anomaly
detection, researchers have applied independent hash functions
to create multiple random projections of traffic traces called
“sketches.” Sketches represent different views of the traffic that
assist detectors to pinpoint anomalous flows [2], [6]. Schweller
et al. [13] proposed a reverse hashing method to identify
IP addresses responsible for heavy changes in the traffic.
Diverse sketching techniques have recently enabled efficient
measurements on software-defined networks (SDN) [16]. Our
utilization of the hash function more resembles load balancing
[4], but like any anomaly detector, sketch-based detectors can
certainly be used with Hashdoop.

MapReduce has recently received a lot of attention in the
literature including a few studies on network traffic. Lee et al.
implemented a scalable platform for traffic analysis that uses
Hadoop [10]. They implemented a specific wrapper to read
pcap files on Hadoop and showed its benefits with several
traffic analysis tools. Our proof of concept implementation is
currently using traffic in textual format, but we are planning in
future work to use this wrapper or a similar one [1] to improve
the performance of Hashdoop. In addition, Logothetis et al.
proposed a MapReduce platform [11] to distribute processing
tasks close to the nodes that capture data. This in-situ approach
reduces the cost of data transfer and is also part of the future
plans for Hashdoop.

VI. CONCLUSION

In this paper, we studied the applicability of the MapRe-
duce model to detect Internet backbone traffic anomalies in
real time. We found that the classical data slicing used for tex-
tual documents breaks spatial and temporal traffic structures,
which dramatically deteriorates anomaly detector performance.
Therefore, we proposed Hashdoop, a framework that preserves
spatial and temporal traffic structures by splitting the traffic
with a hash function, thus permitting anomaly detectors to
be processed with the MapReduce model. This framework
was evaluated with a 6-node Hadoop cluster, fifteen back-
bone traces captured between 2001-2013, and two anomaly
detectors, a packet count based detector and Astute. Our ex-
periments revealed that the proposed framework improved the
packet count based detector throughput from 360 kpps to 1.27
Mpps and from 25 kpps to 375 kpps for Astute, thus dividing
its processing time by 15. In addition, we observed better
detection performance with Hashdoop as hashing projects
anomalies in buckets with less background traffic. However, we
observed that dividing traffic into too many splits may cause
adverse results because each split may contain insufficient

traffic for the statistical tests of anomaly detectors. This trade-
off is dependent on the anomaly detector used and will be
studied in future work.

The implemented proof of concept benefits from Hadoop
scalability, scheduling, and fault tolerance, which are par-
ticularly useful for anomaly detection. In future work, we
are planning to investigate these benefits in order to run
different detectors in parallel and combine them as it is done
in MAWILab [7].

ACKNOWLEDGMENTS

This research has been supported by the Strategic Interna-
tional Collaborative R&D Promotion Project of the Ministry
of Internal Affairs and Communication in Japan and by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 608533 (NECOMA). The
opinions expressed in this paper are those of the authors and
do not necessarily reflect the views of the Ministry of Inter-
nal Affairs and Communications, Japan, or of the European
Commission.

REFERENCES

[1] Ripe hadoop pcap. https://labs.ripe.net/Members/wnagele/large-scale-
pcap-data-analysis-using-apache-hadoop, 2011.

[2] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian.
Anomaly extraction in backbone networks using association rules. IMC
’09, pages 28–34, 2009.

[3] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina.
Impact of packet sampling on anomaly detection metrics. In IMC’06,
pages 159–164, 2006.

[4] Z. Cao, Z. Wang, and E. Zegura. Performance of hashing-based schemes
for internet load balancing. In INFOCOM’00, volume 1, pages 332–
341, 2000.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[6] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho. Extracting
hidden anomalies using sketch and non gaussian multiresolution sta-
tistical detection procedures. SIGCOMM LSAD ’07, pages 145–152,
2007.

[7] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda. MAWILab :
Combining diverse anomaly detectors for automated anomaly labeling
and performance benchmarking. CoNEXT ’10, 2010.

[8] R. Fontugne and K. Fukuda. A hough-transform-based anomaly detector
with an adaptive time interval. ACM SIGAPP Applied Computing
Review, 11(3):41–51, 2011.

[9] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. SIGCOMM ’05, pages 217–228, 2005.

[10] Y. Lee and Y. Lee. Toward scalable internet traffic measurement and
analysis with hadoop. SIGCOMM Comput. Commun. Rev., 43(1):5–13,
Jan. 2012.

[11] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum. In-situ mapreduce
for log processing. In 2011 USENIX Annual Technical Conference
(USENIX ATC11), page 115, 2011.

[12] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang. An
empirical evaluation of entropy-based traffic anomaly detection. IMC
’08, pages 151–156, 2008.

[13] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible sketches
for efficient and accurate change detection over network data streams.
In IMC’04, pages 207–212, 2004.

[14] F. Silveira, C. Diot, N. Taft, and R. Govindan. Astute: Detecting a
different class of traffic anomalies. In SIGCOMM’10, pages 267–278,
2010.

[15] T. White. Hadoop: the definitive guide. O’Reilly, 2012.
[16] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement

with opensketch. In NSDI’13, pages 29–42, 2013.


