
SEVENTH FRAMEWORK PROGRAMME
Information & Communication Technologies

ICT

Cooperation Programme

Nippon-European Cyberdefense-Oriented Multilayer threat Analysis†

Deliverable D3.5: Countermeasure Application -
Results

Contractual Date of Delivery November 30th 2015
Actual Date of Delivery November 30th 2015
Deliverable Dissemination Level Public
Editors Youki Kadobayashi and Jouni Vi-

inikka
Contributors All NECOMA partners

The NECOMA consortium consists of:

Institut Mines-Telecom Coordinator France
ATOS SPAIN SA Principal Contractor Spain
FORTH-ICS Principal Contractor Greece
NASK Principal Contractor Poland
6CURE SAS Principal Contractor France
Nara Institute of Science and
Technology

Coordinator Japan

IIJ - Innovation Institute Principal Contractor Japan
National Institute of Informatics Principal Contractor Japan
Keio University Principal Contractor Japan
The University of Tokyo Principal Contractor Japan

† The research leading to these results has received funding from the European Union Sev-
enth Framework Programme (FP7-ICT-2013-EU-Japan) under grant agreement n° 608533
and the Strategic International Collaborative R&D Promotion Project of the Ministry of In-
ternal Affairs and Communication, Japan.

www.necoma-project.eu 2 November 30, 2015

Contents

1 Introduction 9

2 Architecture 11

3 Infrastructure-level Cyberdefense Mechanisms 13
3.1 MPLS-based DDoS Mitigation 14

3.1.1 Threat Description . 14
3.1.2 Proposal Overview . 16
3.1.3 Approach Using Load Balancing Routing 17
3.1.4 Approach Using Policy-based Routing 18
3.1.5 Reconfiguration Mechanism Implementation 21
3.1.6 Experiments . 22
3.1.7 Results . 24

3.2 SDN-based Autonomic Cyberdefense 26
3.2.1 Design Overview . 26
3.2.2 Enabling security functions by SDN 27
3.2.3 ArOMA: Autonomic DDoS Mitigation Framework . . . 32
3.2.4 Implementation and Evaluation of ArOMA 35

3.3 DDoS Mitigation and Defense on Internet eXchanges (IX) with
SDN Technologies . 38
3.3.1 Threat Description . 38
3.3.2 Internet eXchange Points 39
3.3.3 Design of SDN IX . 40
3.3.4 DDoS Defense on SDN IX 41
3.3.5 Architecture . 41
3.3.6 Experiments . 43

3.4 LISP-based DDoS Mitigation 45
3.4.1 Threat Description . 45

3

3.4.2 State of The Art . 45
3.4.3 Proposal . 46
3.4.4 Overview of LISP . 47
3.4.5 Two-stage Map Table Extension 48
3.4.6 Advantages . 50
3.4.7 Experiment . 51

3.5 Threat Detection and Mitigation for Public Cloud 54
3.5.1 Threat Description . 54
3.5.2 Proposal . 55
3.5.3 System Design . 57
3.5.4 Implementation . 60
3.5.5 Results . 65

3.6 Improving Cloud-based Intrusion Detection through High-Performance
Virtualization . 72
3.6.1 Proposal . 72
3.6.2 Tools and Technologies 72
3.6.3 Architecture and Results 73

4 Endpoint-level Cyberdefense Mechanisms 77
4.1 Improving Resilience through Personalization 77

4.1.1 Threat description . 77
4.1.2 Overview of Resilient Defense for Phishing 78
4.1.3 Implementation . 79
4.1.4 Preliminary Evaluation 85

4.2 Smartphone User Protection 87
4.2.1 Threat Description . 87
4.2.2 Tools and Technologies 87
4.2.3 Architecture and results 88

4.3 Offloading Smartphone Firewalling Using OpenFlow-capable
APs . 91
4.3.1 Threat Description . 91
4.3.2 State of the Art . 92
4.3.3 Proposal Design . 93
4.3.4 Implementation . 94

5 Conclusion 97

www.necoma-project.eu 4 November 30, 2015

List of Figures

2.1 Architecture Design . 12

3.1 Infrastructure with routers under our control, a legitimate
user accessing a protected service behind an on-premise clean-
ing center. 14

3.2 Infrastructure under a small attack, still handled by the clean-
ing center. 15

3.3 A large attack, overwhelming the network infrastructure and/or
the cleaning center. 15

3.4 Distributed mitigation making use of upstream resources closer
to attack sources. 16

3.5 Use of Load-Balancing to mitigate attacks overwhelming the
network infrastructure and/or the cleaning center. 18

3.6 Policy Based Routing Implementation. 20
3.7 Testbed for MPLS-based DDoS Mitigation Mechanism. 23
3.8 Legitimate and attack traffic volumes before the attack; dur-

ing the attack; and while under attack, before and during
mitigation. 25

3.9 Design architecture of autonomic defense system. 27
3.10 Operational flow (left) and the Floodlight based implementa-

tion (right) of anomaly detectors as an SDN application. . . . 28
3.11 Throughputs with varying data rates and query intervals. . . . 31
3.12 SDN enabled DDoS mitigation framework 33
3.13 Playout Buffer . 38
3.14 Average goodput and estimated bandwidth 38
3.15 Amplification Attack . 39
3.16 An architecture of SDN-IX . 40

5

LIST OF FIGURES

3.17 PIX-IE Architecture . 43
3.18 Ingress traffic volume and matched packet volume of SYN

Flood and DNS Amp filters on PIX-IE 44
3.19 Packet forwarding sequence among LISP routers and the Map-

Server. 47
3.20 Packet forwarding on LISP networks. 48
3.21 Mitigation sequence on two-stage map table. 48
3.22 Packet forwarding on two-stage map table. 49
3.23 The experiment topology . 51
3.24 Traffic volume on victim and decoy server (iperf UDP). 52
3.25 Traffic volume on victim and decoy server (DNS). 53
3.26 Traffic volume on victim and decoy server (HTTP GET). . . . 54
3.27 Countermeasure methods for cloud threats. 56
3.28 System design against cloud threats 58
3.29 Resource Monitoring for Exclusive / Collective Resources in

the Hypervisor. 59
3.30 Proposed MIB Architecture for vCPU and vStorage. 61
3.31 Proposed MIB Architecture for vNetwork. 61
3.32 Monitoring VM information from hypervisor. 62
3.33 Proposed Architecture to collect information for Hypervisor

and VMs. 63
3.34 Deployment Overview of d4c. 65
3.35 System flow diagram of the implemented system. 66
3.36 Screenshot of the posts by agurim on NECOMAtter (Partially

masked). 67
3.37 Throughput of DNS packet forwarding with text matching on

one QNAME. 68
3.38 Throughput of DNS packet forwarding with text matching on

several QNAMEs. 69
3.39 The architecture of the cloud-based IDS implementation. . . . 74
3.40 An overview of the data captured by Snort with the help of

BASE engine. 74
3.41 Alerts captured for the respective VMs of the system. 75

4.1 Eye-tracking in a phishing site 78
4.2 Eye-tracking in a legitimate site 78
4.3 The architecture of EyeBit+ 79
4.4 Design overview of personalized defense. 83
4.5 Request message from the PDP to the analysis module in

Phase 3 . 84
4.6 Response message from the analysis module to the PDP in

Phase 4 . 85
4.7 Stress Test Analysis of the Analysis Modules using ApacheBench 86
4.8 Execution sequence of the system 89

www.necoma-project.eu 6 November 30, 2015

LIST OF FIGURES

4.9 User actions for solving a CAPTCHA puzzle when sending an
SMS from the built-in Messaging app 90

4.10 An overview of smartphone protection using OpenFlow-capable
APs . 94

www.necoma-project.eu 7 November 30, 2015

LIST OF FIGURES

www.necoma-project.eu 8 November 30, 2015

1
Introduction

The main objective of workpackage 3 is to provide defense mechanisms
against cyber attacks and malware. By defense mechanisms, we mean any
element(s) of the protected network/system/application that can be recon-
figured in response to an attack, coupled with the logic allowing its recon-
figuration. These elements can be existing security mechanims such as fire-
walls, intrusion prevention systems, or anti-DDoS systems; or more generic
elements, such as user directories, proxies, routers, switches, virtual ma-
chine hypervisors, and web browsers. We call such component a Policy
Enforcement Point (PEP)

We previously proposed the design of several defense mechanims, both
at infrastructure and endpoint layers, in the deliverable D3.4 [33]. This doc-
ument reports the prototype mechanisms developed, the experience gained
during the development and results on early experimentations during the
validation of the prototypes.

The document begins with a reminder of the architecture we have pro-
posed for combining the data collection, analysis, and countermeasure ap-
plication in Chap. 2.

The infrastructure level mechanims are presented in Chap. 3, covering
four DDoS mitigation mechanisms aimed largely at volumetric attacks cur-
rently plaguing the Internet because of amplification effects provided by
design or implementation flaws in protocols and services such as DNS, NTP,
SSDP and so on. The mechanisms share similarities in their basic filtering
capability and granularity, but are based on different networking technolo-
gies and applicable in different locations in the infrastructure: at the target
and its first upstream provider (Sect. 3.1) and (Sect. 3.2), at Internet ex-
changes (Sect. 3.3), or at the attack source (Sect. 3.4).

Another aspect covered by two mechanisms is threat detection and mit-
igation in cloud infrastructures: one for public, infrastructure as a service

9

CHAPTER 1. INTRODUCTION

cloud environment (Sect. 3.5); and a second for intrusion detection inside
the hypervisor (Sect. 3.6).

The endpoint level mechanisms are presented in Chap. 4, covering phish-
ing mitigation through in-browser personalization (Sect. 4.1), protecting
smartphone user against SMS fraudsters and premium dialers (Sect. 4.2),
and offloading smartphone firewall functions for both URL and IP filtering
to a wireless access point (Sect. 4.3).

www.necoma-project.eu 10 November 30, 2015

2
Architecture

The current design of the whole system is an update and extension of the
design proposed during the activities related to workpackage 1. An exten-
sive explanation of the whole architecture was provided in the deliverable
D2.1[32]. Figure 2.1 illustrates the current architecture design, which in-
volves a rather complex system and process flow, which begins with data
gathering and ends on effective exploitation of the various analysis results.

Effective exploitation happens when the results of data analyses, per-
formed over data collected at the beginning of the process flow, are succes-
fully interpreted and exploited to reconfigure deployed PEPs. This is the
role of resilience mechanisms, as indicated in Figure 2.1. Analysis results
are not directly used by resilience mechanisms but first integrated in the
threat information sharing component (TISC), which retrieves information
from either data stores (either internal or external) or analysis modules,
and serves it to clients on request or in real time. Finally, resilience mecha-
nisms will reconfigure deployed PEPs in order to maintain acceptable levels
of availaibility of the protected targets in the face of disruptions.

Some examples of reconfiguration include dynamically modifying rules
in a firewall filtering table, changing an SDN switch commutation table, or
deactivating LDAP accounts.

11

CHAPTER 2. ARCHITECTURE

Figure 2.1: Architecture Design

www.necoma-project.eu 12 November 30, 2015

3
Infrastructure-level Cyberdefense Mechanisms

This chapter groups the description of prototypes for infrastructure-level
defense mechanisms, improving resilience against DDoS attacks and the re-
silience of cloud environments.

All the DDoS mitigation mechanisms described focus on volumetric at-
tacks. The common factor of such attacks is that they saturate the low level
resources such as link bandwidth or router’s packet processing capability.
This saturation take place as the aggregate volume from distributed sources
increases due to a funnelling effect, often close to the target. Close typically
means right before the target, requiring countermeasures to be applied also
upstream from the target.

• Section 3.1 describes an MPLS-based mechanism to push the defenses
upstream from the choking point.

• Section 3.2 discusses the perspectives for autonomic cyberdefense pro-
vided by software-defined networking, and Sect. 3.2.3 desrcibes an
SDN-based framework allowing the targeted organization to collabo-
ratively mitigate the attack with its service provider.

• Section 3.3 describes an SDN-based Internet exchange allowing the
mitigation of attack traffic on the peering links between the autonomous
systems.

• Section 3.4 describes a LISP-based mitigation mechanism allowing the
mitigation much further upstream, close to the attack source.

The mechanisms improving the resilience of cloud infrastructures are
presented in the following sections.

• Section 3.5 describes detection and mitigation of attacks in a public,
infrastructure as a service cloud environment.

13

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

• Section 3.6 describes an intrusion detection system capable of detect-
ing attacks between virtual machines running on the same hypervisor
host.

3.1 MPLS-based DDoS Mitigation

In this section, we describe a DDoS mitigation mechanism used for distribut-
ing part of the mitigation load upstream from the target.

3.1.1 Threat Description

We place ourselves in a DDoS mitigation situation, where the attack in one
way or another overwhelms a defense mechanism and/or its underlying
resources at a choke point, often close to the victim.

Figure 3.1 shows an example infrastructure, where a service is being
protected by a cleaning center at the datacenter entrance and a legitimate
user is able to access the service in a nominal situation. By cleaning center,
we mean one or more nodes filtering out DDoS attack traffic by using access
control lists, firewalling capabilities, intrusion prevention systems, DDoS
mitigation systems, etc. The legitimate flow is depicted in green, and we
suppose that the cleaning center is able to filter DDoS attacks to at least
some extent.

cleaning
center

service

Figure 3.1: Infrastructure with routers under our control, a legitimate user
accessing a protected service behind an on-premise cleaning center.

In the case of a small attack, the cleaning center and the surrounding
network infrastructure is able to cope with the attack volume and to filter
out the malicious packets while allowing the legitimate traffic to continue
flowing. Figure 3.2 shows such a situation with the attack traffic depicted
in red and the legitimate traffic in green.

www.necoma-project.eu 14 November 30, 2015

3.1. MPLS-BASED DDOS MITIGATION

cleaning
center

service

Figure 3.2: Infrastructure under a small attack, still handled by the cleaning
center.

A large attack can either overwhelm the cleaning center’s processing ca-
pacity, and/or the available resources upstream (e.g., router, load balancer
or firewall processing capacity; or simply the available bandwidth on a net-
work link).

cleaning
center

service

Figure 3.3: A large attack, overwhelming the network infrastructure and/or
the cleaning center.

Figure 3.3 shows such an attack, where some low level processing ca-
pacity is being consumed by the attack before the attack traffic even reaches
the datacenter and thus the cleaning center. One reason to such exhaustion
is the funneling effect that concentrates the attack coming from distributed
sources towards the target. In such a situation, the service is unavailable,
no matter how efficient the cleaning center would be in removing the attack
traffic, as the legitimate traffic is already being lost in transit due to con-
gestion. Another situation we consider, but not shown in the figures, is that
the network resources themselves are sufficient, but the processing capacity

www.necoma-project.eu 15 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

of the cleaning center is insufficient - the end result being more or less the
same for the legitimate users and the service.

3.1.2 Proposal Overview

The objective is to find means to distribute the defense and to consume the
attack at least partially before it reaches the choke point.

Figure 3.4 depicts the idea of distributing the mitigation upstream from
the target, closer to the attack sources. We believe that, this way, it would
be possible, for some types of attacks and in some environments, to divide
the problem and prevent the attack aggregate from becoming too important
to be processed.

cleaning
center

service

Figure 3.4: Distributed mitigation making use of upstream resources closer
to attack sources.

There are different ways this type of distribution could be achieved. One
approach would be the multiplication of target services in a distributed man-
ner, e.g., by using a content delivery network to host them. Another option
would be to use in some way resources available in the network core, e.g.,
by using several cleaning centers distributed in the core network and pulling
in part of the attack traffic; or then using the network equipment in the core
to fend off parts of the attack, preferably as close to the attack sources as
possible and combine this with more precise mitigation by a cleaning center
in front of the targeted services.

This proposal focuses on the last option. As the mitigation capacity of
the core network equipment is limited to coarse-grained filtering based es-
sentially on layer 3 and layer 4 criteria, we expect them to drop legitimate
traffic as well. Thus, the objective is to use those equipment to drop only
as much of suspicious traffic as necessary to avoid congestion and use the
cleaning center for finer grained filtering for the remaining traffic.

We base our proposal on the MultiProtocol Label Switching (MPLS) pro-
tocol, in order for the mitigation to be executed on existing edge and MPLS

www.necoma-project.eu 16 November 30, 2015

3.1. MPLS-BASED DDOS MITIGATION

routers. This routing paradigm defines paths - named Label Switching Paths
(LSPs) - along the network. The ingress network router maps each packet
to a LSP according to a policy, encapsulates the packet in an MPLS header
and sets the MPLS label value to one corresponding to the LSP. Core routers
then determine a packet’s next-hop by looking at the label. A Forwarding
Equivalence Class (FEC) refers to a group of packets sharing the same LSP.

We build on previous work from Hachem et al. [18] proposing an MPLS-
based damage control approach. The network availability is ensured by
degradation of traffic classes’ Quality of Service (Qos) depending on the es-
timated impact. Traffic-Engineering (TE) and Differentiated Services (Diff-
Serv) MPLS extensions are employed to generate and prioritize traffic classes.
In our case, we use two traffic classes, one for suspicious i.e., supposed DDoS
attack traffic, and another for legitimate flows. Instead of using an IDS to
label the traffic, we seek to achieve the labeling by the routers themselves.

We set up a separate MPLS tunnel for each traffic class; use Traffic En-
gineering extensions to associate a bandwidth allocation for each tunnel
to avoid congestion inside the MPLS network; and use the Differentiated
Services extensions to define per-hop behaviors for each traffic class. In par-
ticular, these per-hop behaviors allow us to limit the resources available for
suspicious traffic and thus to degrade its quality of service.

In the next sections, we present two ways of segregating suspicious traf-
fic from the overall traffic, the first, in Sect. 3.1.3, is based on load-balancing
features, and the second, in Sect. 3.1.4, on policy-based routing.

3.1.3 Approach Using Load Balancing Routing

The load-balancing feature in routers allows dispatching the packets be-
tween different tunnels according to some criteria. Our first idea was to
influence the load-balancing in such a way that it differentiates between
the suspicious and legitimate traffic, sending them to two different tunnels
as described above. Then, with the help of MPLS Traffic Engineering and
Differentiated Services extensions, we respectively degrade the QoS for sus-
picious traffic and ensure the legitimate traffic’s QoS.

Figure 3.5 shows an example MPLS network implementing the concept.
Ingress routers, called Load-Balancing Label Edge Routers (LB-LER) load-
balance flows considered suspicious in tunnels represented with red arrows
and flows considered legitimate in tunnels represented in green. The red
tunnels used for suspicious traffic have a degraded quality of service defined
with traffic engineering extensions. MPLS-wise, both types of traffic belong
to the same Forwarding Equivalence Class.

When mitigation is not required, red tunnels regain some priority. Hence,
Label Edge Routers are able to load-balance all FEC traffic through both red
and green tunnels according to weights assigned to tunnels.

www.necoma-project.eu 17 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Figure 3.5: Use of Load-Balancing to mitigate attacks overwhelming the
network infrastructure and/or the cleaning center.

One of our objectives is to use existing equipment for implementing the
mechanism. The routers and firmware available to us (Cisco 7206 VXRs)
provided load-balancing algorithms using the following parameters as in-
put: source and destination IPs, router ID (an administrative value con-
figured at the router), and administrative weights of available paths. The
source and destination IPs being defined by the traffic itself, the remaining
variables allowing us to influence the load-balancing behavior are the router
ID and path weights.

Unfortunately, during the experimentations, it turned out that, in such
a configuration, we are unable to control how flows are treated, i.e., to
use the load-balancing algorithm to differentiate between flows we consider
suspicious and legitimate.

3.1.4 Approach Using Policy-based Routing

The second idea was to use policy-based routing instead of load-balancing
routing for DDoS mitigation. In policy-based routing, the routing decision
is not based on routing tables, but on other criteria (i.e., the policy) defined
by the administrator. This is described in Sect. 3.1.4.1.

The Cisco IOS versions in our test environment do not implement Differ-
entiated Services-aware MPLS Traffic Engineering [12]. In other words, this
means that bandwidth reservations for Traffic Engineering tunnels cannot
be enforced with the help of built-in DiffServ-TE functions. Consequently,

www.necoma-project.eu 18 November 30, 2015

3.1. MPLS-BASED DDOS MITIGATION

we need to set up a custom bandwidth policy enforcement, described in
Sect. 3.1.4.2.

3.1.4.1 Defining Routing Policy with ACLs

Cisco proposes route maps for using other criteria than the routing table for
deciding how a packet is routed. In our case, the route maps allow us to use
an Access Control List (ACL) to match suspicious traffic.

ACLs allow the use of the following criteria to match a packet

• source IP address,

• destination IP address,

• layer 4 protocol,

• layer 4 port (for TCP and UDP), or

• any combination of the previous items,

and thus provides finer-grained control than routing tables.
For each attack requiring mitigation and for each router interface con-

cerned (i.e., the ingress interfaces at the ingress routers), we define an ACL
matching the suspicious traffic.

3.1.4.2 Enforcing Degraded QoS

To enforce a degraded quality of service for suspicious traffic, we use Cisco’s
policy maps. In a same way as route maps allow us to influence the routing
decisions, policy maps allow us to map traffic policing to a Cisco traffic class.
As with the route maps, we use the ACLs to map traffic to a traffic class, as
depicted in Fig. 3.6.

We use a traffic policy that consists of two elements, first being used at
the ingress router(s) and second on routers further down the path. The first
element is a bandwidth-limiter for the traffic class, to ensure that the tunnel
bandwidth remains within its allocated limits. The second element sets the
EXP field of the MPLS header to a predefined value the MPLS domain uses
to identify suspicious traffic. Such a traffic can be de-prioritized by the
following routers, again by using policy maps tying the EXP field value to
some mechanism, such as degrading the scheduling for packets carrying this
EXP value. One limitation of this approach is that suspicious traffic is treated
in the same manner for all attacks.

www.necoma-project.eu 19 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Figure 3.6: Policy Based Routing Implementation.

www.necoma-project.eu 20 November 30, 2015

3.1. MPLS-BASED DDOS MITIGATION

3.1.5 Reconfiguration Mechanism Implementation

In this section we describe a module allowing the reconfiguration of Cisco
routers for mitigating DDoS attacks following the policy-based routing ap-
proach from Sect. 3.1.4.

The module has been developped in Python, requires a topology def-
inition for the infrastructure used for mitigation, provides a set of com-
mands allowing the deployment of the mitigation configuration on routers
remotely.

3.1.5.1 Topology Model

We use a simple, JSON-based topology model for the network infrastructure
used for mitigation. We currently feed the topology manually, but auto-
mated construction would be possible, e.g., starting from router configura-
tion exports or from minimal connection information (IP, login, password)
for collecting further details from the routers.

Below is an example of such a topology information in JSON format:

{

"topology": {

"routers": [

{

"name": "degR",

"host": "192.0.0.1",

"port": 23,

"status": "up",

"telnet_password": "cisco",

"enable_password": "cisco",

"interfaces": [

{ "name": "L0", "ip": "192.0.0.1/32",

"type": "Loopback", "status": "up" },

{ "name": "G0/0", "ip": "172.16.5.2/24",

"type": "Ethernet", "status": "up" },

{ "name": "G1/0", "ip": "172.16.3.2/24",

"type": "Ethernet", "status": "up" },

{ "name": "G2/0", "ip": "172.16.4.2/24",

"type": "Ethernet", "status": "up" },

{ "name": "G3/0", "ip": "172.16.7.1/24",

"type": "Ethernet", "status": "up" }

]

},

...

]

}

www.necoma-project.eu 21 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

3.1.5.2 Reconfiguration Functions

The module connects to network equipment using their remote command
line interface and by interacting with the equipment by sending commands
as a human operator would. It provides a wrapper for command-line access
to the equipment over the network, accessible via its own command line
interface or usable as a Python module. To set up a mitigation configuration
using policy-based routing as described previously, the following parameters
are required:

• ACL definition, e.g. a list of source IP addresses;

• the tunnel used to forward the suspicious traffic; and

• the bandwidth limit for the suspicious traffic.

The module automates the creation of the required route maps, class
maps and policy maps. It can also dynamically set up MPLS tunnels based
on an ordered list of inbound and outbound router interfaces through which
the tunnel should go.

3.1.6 Experiments

This section describes the test environment set up for validating the imple-
mentation, in terms of testbed and traffic generation; and experimentations
conducted with the module.

3.1.6.1 Testbed

The testbed used for validating the module at unit testing level is depicted in
Fig. 3.7. We have chosen to use real equipment (vs. simulated environments
such as GNS31) to ensure that the module is really compatible with real
equipment and in order to be able to have meaningful performance results.

Components Two Cisco 7206 VXR routers are placed at the ingress of the
MPLS network, to handle incoming traffic. Both of them are used
for the policy-based routing mitigation set up by the reconfiguration
module. The ingress routers are connected to the egress router of the
MPLS network, namely a Cisco 3660. A traffic generator outside the
MPLS network is used to inject both legitimate and attack traffic and
a traffic sink is the final destination of the traffic. There is a VLAN-
capable switch providing connectivity between the routers.

1http://www.gns3.com/

www.necoma-project.eu 22 November 30, 2015

http://www.gns3.com/

3.1. MPLS-BASED DDOS MITIGATION

Figure 3.7: Testbed for MPLS-based DDoS Mitigation Mechanism.

L1 connectivity Each router interface as well as the traffic generator are
directly connected to the ports of the switch with 1 Gbps links. The
only exception is a 100 Mbps link going further from the 3660 towards
the traffic sink. In such a configuration, the 100 Mbps link can largely
be overwhelmed by the volume of traffic potentially coming through
the two 1 Gbps upstream connections from the the 7206 VXRs.

L2 connectivity Each link presented in Fig. 3.7 corresponds to a VLAN with
corresponding switch ports assigned to that VLAN.

MPLS overlay There are two MPLS tunnels starting from each of the two
ingress routers, one for legitimate traffic and another for suspicious
traffic. These tunnels terminate at the egress router.

Rate-limiting policy At each ingress router, the policy-map related to the
attack class-map rate-limits the suspicious traffic to 10MBps.

ACL In this experimentation the ACLs are constructed using source IP and
destination IP addresses for identified attack flows. The detection /
identification is out of the scope of this experimentation, but could
be provided e.g., by the cleaning center and combined with DDoS /
botnet related information obtained from NASK datasets through n6.

3.1.6.2 Traffic Generation

We generate test traffic by combining legitimate traffic and attack traffic
from different captures.

www.necoma-project.eu 23 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

In order to have realistic legitimate traffic, we use captures from the
MAWI repository [15]. As we place ourselves in a situation where the clean-
ing center is located at a datacenter entrance and not on a backbone link
(where the MAWI traffic has been captured), we extract traffic correspond-
ing to two /24 destination prefixes from the captures. The intention is to
obtain realistic legitimate traffic that could correspond to a traffic incoming
a datacenter towards the hosted IP ranges.

Attack traffic is generated by cloning and modifying a response to a DNS
type ANY query for the domain isc.org (resulting in a large, almost 4000-
byte response). The responses are modified so that the destination IP cor-
responds to the attack target and by using a pool of source IP addresses
corresponding to open resolvers that could be used in a DNS amplification
attack. More precisely, for each /24 prefix selected above, we

• use 4 target IP addresses in that prefix, two of them matching destina-
tion IPs present in the legitimate traffic;

• randomly generate a given number of source IPs.

The number of attacking sources can differ for each prefix: e.g., we have
been using up to 4000 sources for the first prefix and up to 2500 sources for
the second. Traffic for each prefix is reinjected towards a different ingress
router.

3.1.7 Results

Overall, the testing was an iterative process, which allowed to validate and
stabilize the design principles and the basic features including connection
to routers, reconfiguration, etc.

In order to assess the efficiency, different tests were run, where we mea-
sured the following metrics:

• inbound legitimate traffic at the ingress routers,

• outbound legitimate traffic from the egress router, and

• outbound attack traffic from the egress router.

One sample of the observed results is shown in Fig. 3.8 covering four
different phases:

• before the attack (seconds 0-5);

• during the attack, before the mitigation (seconds 5-20);

• reconfiguration for mitigation (second 20); and

• mitigation active (seconds 20-)

www.necoma-project.eu 24 November 30, 2015

3.1. MPLS-BASED DDOS MITIGATION

Figure 3.8: Legitimate and attack traffic volumes before the attack; during
the attack; and while under attack, before and during mitigation.

and shows

• inbound legitimate traffic in black,

• outbound legitimate traffic in green, and

• outbound attack traffic in red.

The first phase lasts around 5 seconds during which only legitimate traf-
fic is being injected. The outbound legitimate traffic is equal to the in-
bound legitimate traffic (around 50Mbps), without losses. During the sec-
ond phase, from 5 s to 20 s, the attack traffic is being injected in addition
to the legitimate traffic. For the test run shown here, we inject a total of
760 Mbps of attack traffic towards the ingress routers (around 380 Mbps
per router).

At the egress router, the outgoing physical link (cf. Fig. 3.7) is congested
and the malicious traffic fills over 80% of the bandwidth.

This results in link congestion at the egress router and to the loss of over
60% of the legitimate traffic. The reconfiguration for mitigation takes only
few seconds during which 500 amplifiers are added to the ACLs (250 on
each ingress router). The mitigation resolves the congestion. Once it has
been set up, from an egress router’s point of view, the traffic volume returns

www.necoma-project.eu 25 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

back to normal. As the suspicious traffic is bandwidth-limited on ingress
routers up to 10 Mbps for each link towards the egress router, a total of
20 Mbps of suspicious traffic is reaching the egress router and being routed
towards the destination.

Experimentations disclosed some performance limitations related to equip-
ments on our testbed. Whereas the ingress routers are able to handle a large
number of amplifiers (more than 40000 per router) flooding around 500
Mbps per router, the egress router is not able to forward more than 40000
packets per second (pps). Thus, the egress router can become a bottleneck
by its packet processing capacity or by its link capacity, the shift happening
around an average packet size of 312 bytes.

3.2 SDN-based Autonomic Cyberdefense

The rich history of arms race between attacker and defender has clearly in-
dicated that defenders always trail behind attackers. One of the major root
causes is that attackers always gain asymmetric advantages over defenders,
e.g., in DDoS amplification attacks. Another important reason is that de-
veloping, deploying and operating in-depth cyber defense mechanisms at a
large scale is always a challenging and cost prohibitive process. Indeed, we
have learned lots of lessons from the DDoS research domain [30, 35, 50],
in which many kinds of anti-DDoS mechanisms have been proposed. The
majority failed to gain large-scale application and deployment in practice,
chiefly due to labor-intensive cost and high operational complexity. There-
fore, some research efforts on designing autonomic cyberdefense system
have been seen in the past years. However, most of them are focused
on the design of middleware algorithms and approaches, incurring addi-
tional operational complexity, as well as, scalability issues. The emergence
of software-defined networking (SDN) and network functions virtualization
(NFV), which are widely recognized to be promising solutions to reduce the
complexity of network management [24], may bring technological advan-
tages to implement those security middleware approaches in an efficient
and systematic way.

3.2.1 Design Overview

As Figure 3.9 indicates, the designs are expected to systematically inte-
grate the four functional modules, i.e., monitoring, analysis, countermea-
sure, and reaction together, and achieve self-management capabilities. While
this framework is originally intended to lay a foundation to correlate the
different NECOMA work packages through appropriate threat information
exchange formats as well as enabling mechanisms or APIs, the work on dif-
ferent modules reported in the following sections can be treated as a set of

www.necoma-project.eu 26 November 30, 2015

3.2. SDN-BASED AUTONOMIC CYBERDEFENSE

Monitor

Analysis
Counter-
measures

Reaction
Network statusNetwork statusNetwork status

Network infrastructure,
Data plane

Network infrastructure,
Data plane

Policy

Figure 3.9: Design architecture of autonomic defense system.

stand-alone modules, covering the whole loop from detection to reaction,
even if they have not yet been fully integrated together.

With the ultimate objective of developing autonomic cyberdefense mech-
anisms, our contributions are two-fold: (1) the implementation of basic se-
curity functions, e.g., firewalls and IDS/IPS, at the SDN controller, in order
to study the feasibility of constructing multi-layered defense mechanisms;
(2) the development of an autonomic defense framework, named ArOMA,
for mitigating DDoS attacks.

3.2.2 Enabling security functions by SDN

In [43], a security applications-oriented development framework termed
FRESCO was proposed, which aims at providing a number of composable
modules or modular libraries to implement basic security functions such
as IDS/IPS, firewall, traffic monitor, or even customized security service.
To further investigate the feasibility and effectiveness of SDN-based secu-
rity mechanisms, four types of security applications have been implemented
on the Floodlight controller2, (i) in-line mode security functions, e.g., fire-
walls and IPS, (ii) passive mode security functions, e.g., traditional IDS, (iii)
network based anomaly detection functions, e.g., scanner and DDoS detec-
tor, and (iv) advanced security functions, e.g., stateful firewall and reflector
networks. Their performance has been tested on a small-scale yet practi-
cal testbed. In this Section, we selectively describe several representative
functions, while the implementation details and discussions can be found
in [49].

2An Open SDN Controller, available at http://floodlight.openflowhub.org/.

www.necoma-project.eu 27 November 30, 2015

http://floodlight.openflowhub.org/

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

3.2.2.1 Anomaly-based NIDS

The advantages of implementing anomaly detection algorithms on SDN plat-
forms have been identified in some previous work [8, 29]. Unlike traditional
anomaly detection systems which rely on dedicated hardware devices or
software modules to monitor network traffic and measure its statistics, SDN
makes this process much easier by simply retrieving such information from
the data plane. Here, we report the implementations of two simple variants
of anomaly detectors, the network scan detector and the DDoS detector,
both of which use traffic statistics to detect network anomalies.

config.

OpenFlow
Switch

Host A

Host B

Host C

Controller

Anomaly Detector App

(2)

flow statistics
collector

(6) detection

(1) (4)

(3)

A -> C: Forward to (C)
B -> C: Forward to (C)
C -> A: Forward to (A)
C -> B: Forward to (B)

Flow Table

(5) analyzer

(7) alert

Flow

Packet

Anomaly Detection Module (IFloodlightModule)

Application
Layer

config.

alert

Floodlight Controller

Floodlight API

OpenFlow
Switch

Host B

Control
Layer

Infrastructure
Layer

fetchFlowTable()

thread::FlowTableHandler

FloodlightProviderService

Host A

Detection
Algorithmcallback

Figure 3.10: Operational flow (left) and the Floodlight based implementa-
tion (right) of anomaly detectors as an SDN application.

Operational Flow of Anomaly Detectors as an SDN Application. Re-
gardless of specific detection algorithms, the general operational flow of the
Floodlight based implementation is illustrated in the left side of Figure 3.10,
(1) the anomaly detector application initiates a request about traffic statis-
tics, e.g., sFlow, to the controller, (2) the controller relays the request to the
OpenFlow-enabled switch, (3) which then collects the data and returns it to
the controller, (4) the controller then forwards the data to the application,
(5) the information is extracted and represented in a certain format that can
be processed by the detection algorithm, (6) anomaly detector runs, and (7)
generates alerts in the presence of anomalies. Note that a database storing
normal traffic patterns, which is omitted in the figure, is necessary to run
the application.

Floodlight Based Prototype. Regardless of specific anomaly detection
algorithms, a general prototype development framework is shown in the
right side of Figure 3.10. Specifically, as the network anomaly detectors
need to periodically collect traffic statistics, the OpenFlow-enabled switch
is programmed to record flow level traffic statistics, such as byte or packet
counts, in the flow table. Thanks to the intrinsic feature of Floodlight, this

www.necoma-project.eu 28 November 30, 2015

3.2. SDN-BASED AUTONOMIC CYBERDEFENSE

data can be easily fetched via the FloodlightProviderService API. To imple-
ment this, a FlowTableHandler thread is created to periodically request the
flow table data from the controller, while the collection period can be speci-
fied via the configuration file. Then, the flow table data is provided as input
to the anomaly detection module, which runs the specific anomaly detection
algorithm and reports alerts in the presence of anomalies. The baseline files
used by the detection algorithm can be provided via the configuration file.

As for the specific anomaly detectors, we chose to implement an anomaly
score based scan detection algorithm [25] and a DDoS detector. Specifically,
the scan detector computes an anomaly score for each destination port
based on the collected flow table data, following the given algorithm be-
low,

function scan_detection(stats){

foreach(stat : stats){

port_map[stat.getDstPort()] += 1

counts += 1

}

foreach(port : port_map){

prob = port_map[port] / counts

learned_prob = learned_port_map[port]

anomalyscore += -log_2[prob/learned_prob]

}

if(threshold < anomalyscore){

alert();

}

}

In addition, the DDoS detector simply maintains a counter of the number
of bytes and packets in order to calculate the byte rate and packet rate from
the collected data. The pseudocode is given below,

function ddos_detection(stats){

foreach(stat : stats){

bytes += stat.getByteCount()

counts += stat.getPacketCount()

}

bytes -= previous_bytes;

counts -= previous_counts;

bps = bytes/time_interval

pps = counts/time_interval

previous_bytes = bytes;

previous_counts = counts;

if(threshold_bps < bps || threshold_pps < pps){

alert();

}

}

www.necoma-project.eu 29 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

3.2.2.2 Performance Evaluation

One of the important performance metrics for evaluating the SDN applica-
tions is throughput, or the performance burden that could be incurred.

Experimental Setup. To evaluate this metric, three physical SDN testbeds
are established, and each of them consists of an OpenFlow-enabled switch, a
controller machine, and three physical hosts. In particular, three OpenFlow-
enabled switches, namely, an HP 3500yl [19], an HP 3800 [20] and a Pica8
P3290 [36], are deployed respectively in the testbed for the purpose of per-
formance comparison and to avoid any biased performance measurements
due to switch-specific factors. Their specifications are listed in Table 3.1.
Also, the specifications of the controller host and the other three host ma-
chines are described in Table 3.2.

Table 3.1: Specifications of three OF-enabled switches

HP 3500yl HP 3800 Pica8 P-3290
Switch Fabric Capacity 101.8 Gbps 88 Gbps 176 Gbps
Forwarding Speed 75.7 Mpps 65.4 Mpps 132 Mpps
Latency 3.4 µs 2.8 µs 1 µs
Routing Table Size 10,000 10,000 12,000
MAC Table Size 64,000 65,500 32,000

Table 3.2: Specifications of the machines deployed in the testbeds

Type NIC CPU RAM OS
Controller 1Gbps x5 i5-4570 16GB Ubuntu 12.04 64bit

Host A 1Gbps i7-2640M 8GB Ubuntu 12.04 64bit
Host B 1Gbps i5-2450M 8GB Windows 7 64bit
Host C 100Mbps Atom N550 2GB Ubuntu 13.10 64bit

Traffic Generation. For security applications that involve packet-matching
processes, e.g., firewall, NIDS, and NIPS, we semi-randomly generated data
traffic by intentionally excluding a specific port number. Meanwhile, we
generated the firewall and Snort rules to include this port number in or-
der to push the security applications to exhaustively match a packet with
the whole rule-set (the worst case performance). For other applications, we
randomly generated data traffic to measure the throughput. Specifically, the
traffic was sent from Host A to B, and the measurement point was set at
Host C.

Results and Analysis. To test the performance of two anomaly-based
NIDS, scan detector and DDoS detector, we measured their performance in
the presence of varying data rates and query intervals collecting traffic flow
statistics. As indicated by the results shown in Figure 3.11a, the perfor-
mance of the scan detection application was more affected by the switch

www.necoma-project.eu 30 November 30, 2015

3.2. SDN-BASED AUTONOMIC CYBERDEFENSE

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500 Interval 1

HP 3500 Interval 5

HP 3500 Interval 9

HP 3800 Interval 1

HP 3800 Interval 5

HP 3800 Interval 9

PICA8 Interval 1

PICA8 Interval 5

PICA8 Interval 9

(a) Scan detection app.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

110

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500 Interval 1

HP 3500 Interval 5

HP 3500 Interval 9

HP 3800 Interval 1

HP 3800 Interval 5

HP 3800 Interval 9

PICA8 Interval 1

PICA8 Interval 5

PICA8 Interval 9

(b) DDoS detection app.

Figure 3.11: Throughputs with varying data rates and query intervals.

than the flow table collection interval. This indicates that it is feasible to de-
sign practical anomaly-based IDS by monitoring the network states provided
by the SDN functions. Also, as shown in Figure 3.11b, the DDoS detector
performed in a way similar to what the scan detector did. Considering the
two detectors used similar traffic features, such results are not surprising.
It is worth noting that the computational overhead and latency incurred by
the two anomaly detection algorithms were not taken into account, which
essentially have no impact on the throughput. Nevertheless, it is still reason-
able to conclude that depending on whether the traffic features used by the
anomaly detectors are readily available or not through SDN functions (e.g.,
received packet counts of a flow), the performance of an anomaly-based IDS
may vary a lot.

Discussions. Is it possible to achieve autonomic (to some extent) defense
mechanisms by using SDN platforms? One of the salient features of au-
tonomic defense mechanisms is that the complexity of management and
deployment should be significantly reduced, and the intervention of se-
curity administrators should be minimized, achieving what we call self-
management. Formally, the four essential properties of autonomic defense
mechanisms are defined as follows,

• Self-configuration: high-level security policies can be enforced at the
most appropriate points, while the rest of security components or sys-
tems can be adjusted in an automated and consistent manner.

• Self-optimization: the key defense elements continually improve their
performance, efficiency, and effectiveness in terms of desirable perfor-
mance metrics such as detection accuracy, computational overhead,
and latency. More importantly, the consumed resources should bring
negligible impact to the protected service infrastructure.

• Self-healing: the mechanism should be able to quickly identify, infer
and determine the root causes of system failures so as to take appro-

www.necoma-project.eu 31 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

priate response such as system reconfiguration, or attack signature
updates.

• Self-protection: the mechanism is able to proactively avoid or mitigate
the consequence of attacks, including the ones targeting the mecha-
nism itself, based on the threat information exchange, correlation and
analysis.

Comparing the developed prototypes shown in Figure 3.10 with the au-
tonomic defense framework given in Figure 3.9, we can easily identify that
SDN-based applications, more or less, preserve the four properties. In par-
ticular, the SDN controller provides a friendly interface which allows the
security administrators to dynamically specify and update security policies,
despite the fact that automated policy engines should be put in place to au-
tomatically translate security policies into policy functions that can be pro-
cessed by the SDN controller. In addition to the self-configuration capability,
the tight coupling between the data plane and flow rules via well-defined
APIs, rather than monitoring sensors and manual configuration, can achieve
dynamic resource allocation and significantly reduced communication over-
head and latency, ideally leading to self-optimization. Moreover, self-healing
and self-protection can be achieved thanks to the dynamic configurability of
SDN enabled network devices, as well as flexible SDN applications authen-
tication, on-demand traffic flow segregation, and trustworthy path compu-
tation [7].

3.2.3 ArOMA: Autonomic DDoS Mitigation Framework

As we have previously shown, the SDN controller provides global visibility of
the network of deployed OpenFlow switches. Also, the SDN controller can
dynamically configure the OpenFlow switches with rules translated from
the high-level policies defined by the policy engine deployed as a controller
application. This Section specifically presents our proposed autonomic de-
fense framework ArOMA. After describing the threat model, we will outline
the designs of our framework, describing the operational workflow, and fi-
nally cover some implementation details.

3.2.3.1 Threat Description

The key threat we are concerned with is the network resource exhaustion
attack, in which attackers can send large volumes of traffic to exhaust the
shared network resources between the ISP and the customer networks, such
as link bandwidth, routers and servers. In particular, we focus on two types
of DDoS flooding attacks, although other variants can be addressed as well,
as long as the attacks are well characterized.

www.necoma-project.eu 32 November 30, 2015

3.2. SDN-BASED AUTONOMIC CYBERDEFENSE

Figure 3.12: SDN enabled DDoS mitigation framework

• Destination flooding attack: these attacks target the customer network
and its protected servers.

• Bandwidth flooding attack: these attacks aim to congest links in the
ISP network as well as in the customer network so that legitimate
traffic can not get its fair share of bandwidth. This type of attack
traffic cause high collateral damage as it congests the ISP network,
and disrupts the legitimate flows towards other customer networks.

3.2.3.2 Design Framework

The proposed framework ArOMA is shown in Fig. 3.12, which includes the
following key features:

• DDoS mitigation and traffic engineering are provided as on-demand
services to the customers, who need to subscribe to these services with
the ISP beforehand. Then ISPs and customers collaboratively mitigate
DDoS attacks.

• the ISP provides security functions at the application layer of its SDN
controller, allowing the customers to send mitigation requests in real
time.

• both customer and ISP networks have their own controller running in
their networks.

• DDoS attacks are detected by a detection engine running at the cus-
tomer’s controller, which provides the flexibility to the customer to

www.necoma-project.eu 33 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

develop anomaly detection (the feasibility has been studied in Sec-
tion 3.2.2.1) according to their requirements. It helps the customer to
deal with the traffic engineering done by the ISP with no prior knowl-
edge, as the customer can later send the flow information causing the
attack to the ISP.

3.2.3.3 Operational Workflow

As shown in Fig. 3.12, the framework is distributed across the ISP and cus-
tomer networks, and the operational workflow (labeled with step numbers)
can be described as follows:

1. as the traffic enters the ISP network, the controller associates a label to
the flows, these labels are used for fast forwarding and rerouting the
flows. The core routers in the ISP network do not require the states to
be maintained as the forwarding is done based on the labels;

2. Flow statistics are periodically collected by the Flow statistics collector
from the ingress switch in the customer network. We use an OpenFlow
(OF) collector in the framework. To collect flow statistics, we rely on
previous results [17] that showed how OpenFlow and sFlow can be
used for the collection of flow statistics and the detection of anomalies
in the traffic.

3. Collected flow statistics are forwarded to the detection engine for pro-
cessing. The detection engine can run any anomaly detection algo-
rithm that is most suited to its flows [17]. In the presence of malicious
and suspicious flows, security alerts are generated by the detection
engine, which trigger reaction from the policy engine;

4. The Policy engine in the customer network generates and install the
rules at the ingress switch to process the traffic.

5. The FlowID (source IP Address, destination IP address) of suspicious
(flows which are causing congestion but may be legitimate) and ma-
licious (attack traffic) flows are encapsulated into security requests
made to the security application at the ISP’s controller;

6. The security application forwards the received FlowID (source IP Ad-
dress, destination IP address) from the customer controller to the mit-
igation engine at the ISP controller.

7. The mitigation engine then communicates with the policy engine and
path lookup module and redirects the flow to the appropriate middle-
boxes for processing.

www.necoma-project.eu 34 November 30, 2015

3.2. SDN-BASED AUTONOMIC CYBERDEFENSE

3.2.4 Implementation and Evaluation of ArOMA

This Section describes the implementation and experiments of ArOMA on
DDoS mitigation.

3.2.4.1 Implementation Details

Controller to controller communication. The communication between
the controllers is done for the purpose of mitigating the attack. More specif-
ically, the process to notify the ISP controller to start DDoS mitigation is
indicated as Step 5 in Figure 3.12: the Detection Engine accesses the Security
Application via a REST API and sends the FlowID of the malicious flows to
the ISP controller, which then starts the mitigation.

Flow path reconfiguration at the ISP Controller.
The components at the ISP controller need to communicate in the fol-

lowing way,

1. when the FlowID is received by the Security Application at the ISP
controller, it forwards the FlowID to the mitigation module;

2. on receiving the FlowID, the Mitigation Engine forwards it to the Policy
Engine to update the policy associated to the detected flow (identified
by the FlowID, and then it selects the functions most appropriate to
process the flow (in the form of middleboxes). The Policy Engine main-
tains information about the security policies and the relevant middle-
boxes to process the corresponding flows;

3. when the Mitigation Engine receives the policy specifications from the
Policy engine, it requests the Path Lookup module for selecting a path
appropriate to enforce the policy and which contains the middlebox.
The Path Lookup module is responsible for maintaining a list of paths
spanning from ingress switch to egress switch and associates a label
with each path. The matching label for the selected path (enforcing
the policy) is returned;

4. the Mitigation Engine modifies the Flow Label to be inserted at switch
S1 in the 12 bit VLANID field of the packet, hence redirecting the flow.

3.2.4.2 Experiments

The purpose of our experiments is to validate the feasibility and effective-
ness of our proposed autonomic defense framework ArOMA on DDoS miti-
gation in terms of performance metrics.

Platform. The topology of our experimental platform is similar to the
data plane configuration shown in Figure 3.12, where the ISP and customer
networks are managed by their respective SDN controllers. The components

www.necoma-project.eu 35 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

and specifications of the platform are given in Table 3.3. For simplicity,
two routing paths are configured for the ISP network: one is QoS guaran-
teed and used for legitimate traffic (going through switches S1, S2, and S4),
while the other is for suspicious or malicious traffic (going through S1, S3
and S4). In the customer network, the OpenFlow switch S5 is attached to
the customer controller. Also, three host machines are virtualized in the
platform, respectively serving as legitimate host, attack host and customer
machine, as shown in Figure 3.12.

Table 3.3: Platform specifications

Component Qty Specification or
Configuration

Role

IBM RackSwitch 5 48 Gigabit ports OF enabled switch
G8052
DELL server R620 2 8-core 2.9 GHz

CPU, 16GB RAM,
10 Gb/s Ethernet
NICs

SDN controller host (ISP,
customer)

SDN Controller 2 Ryu 3.20 Controlling switches in
ISP (S1 to S4) and cus-
tomer networks (S5)

Hosts 3 Ubuntu server
12.04.2, 6-core
3 GHz CPU, 4GB
RAM,20GB HDD

Playing as video stream-
ing server L, attack host A
and video streaming client
C

Traffic generation. We have chosen to use a video streaming service
as the source of legitimate traffic since, nowadays , video traffic accounts
for more than 70 percent of all consumer Internet traffic [10]. In order to
generate the legitimate video traffic between the customer machine C and
the legitimate host machine L, we used TAPAS [9], a video streaming tool.
In particular, one of the salient features of TAPAS is that it adopts adaptive
video streaming strategy to adapt to time-varying networking conditions.
Moreover, the hping3 tool is used to generate volumetric DDoS attacks with
varying rates.

Evaluation metrics. We treat video streaming service as the target ser-
vice to protect, and measure its quality in the face of DDoS attacks with re-
spects to the quality-of-user-experience (QoE) metrics specified in Table 3.4.
As the time to rebuffer increases, average goodput and estimated bandwidth
decrease because of the attack traffic, hence reducing the QoE of watching
the video. These metrics are evaluated from the logs generated at the client.

www.necoma-project.eu 36 November 30, 2015

3.2. SDN-BASED AUTONOMIC CYBERDEFENSE

Table 3.4: Defined metrics to measure the impact of DDoS attacks

Metric Definition Unit
Time to rebuffer the time taken to rebuffer the video

when the streaming buffer gets empty
due to network congestion

second

Average Goodput useful data transferred by the network
per unit time

KB/sec

Estimated band-
width

rate of data transfer KB/sec

3.2.4.3 Results and Analysis

We conducted several rounds of tests to comparatively study the given met-
rics in three cases,

• Video streaming services in normal condition (without attack traffic);

• Under attack without mitigation, and;

• Under attack with our autonomic mitigation module activated.

The metrics are measured at the video streaming client by collecting and
analyzing the log files generated by TAPAS [9].

Time to rebuffer. The client will not be able to play the video as the
streaming buffer gets depleted due to the overwhelming attack traffic. If
this condition holds for a long time, the QoE of users is seriously degraded.
Figure 3.13, where attacks are represented as packets per second(pks), il-
lustrates the ability of our framework to maintain an acceptable QoE. Under
no attack, the TAPAS [9] video client was able to complete the video trans-
mission without any interruptions, and the buffer length could always be
maintained above 15 seconds. In contrast, under DDoS attack, the video
client was not able to buffer the video, leading to a depletion of the playout
buffer down to zero. However, when the mitigation scheme was activated
by the ISP upon the request of the customer controller via the REST API,
the playout buffer returned to a normal level, allowing the video client to
restore playing the video.

Average goodput and estimated bandwidth. We examined the aver-
age goodput and estimated bandwidth, and observed that they could main-
tain a rate above 550 KB/sec without attacks. However, when DDoS at-
tacks were launched and the mitigation module was activated, the average
goodput could be still maintained at 450 KB/sec and the average estimated
bandwidth maintained at 400 KB/sec, as shown in Figure 3.14.

www.necoma-project.eu 37 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

16

18

20

Time(sec)

P
la

y
o

u
t

b
u

ff
e

r(
s
e

c
)

500pks
1000pks
2000pks
no attack

Figure 3.13: Playout Buffer

500 1000 2000 no attack
0

100

200

300

400

500

600

Attack rates

K
B

/s

average goodput

average bandwidth estimation

Figure 3.14: Average goodput and estimated bandwidth

3.3 DDoS Mitigation and Defense on Internet eXchanges
(IX) with SDN Technologies

In this Section, we describe an SDN-based Internet eXchange point (IX),
which provides flexible filtering and mitigation functions.

3.3.1 Threat Description

We assume UDP amplification-based attacks as an emerging threat on inter-
domain networks. Figure 3.15 shows one of the considered DDoS attacks:

www.necoma-project.eu 38 November 30, 2015

3.3. DDOS MITIGATION AND DEFENSE ON INTERNET EXCHANGES (IX)
WITH SDN TECHNOLOGIES

Victim
Network

Victim
Host

The Internet
(Transit ASs, IXs)

Vulnerable Hosts

send request packets with
spoofed address (victim address)

Attackers

reply amplified messages to
the victim hosts

Figure 3.15: Amplification Attack

an amplification-based attack. The attack traffic is coming from multiple
ingress points of the ISP to victim hosts. The traffic, which is amplified by
vulnerable servers, is aggregated on multiple points through the servers to
victim hosts. The aggregated traffic saturates the links between vulnerable
hosts and victim hosts. Even if the attack could be defended against in front
of the victim hosts by Access Control Lists (ACL), a firewall or an IPS, we
cannot eliminate the traffic from links upstream on the Internet. It imposes
constraints on link bandwidths of inter-domain networks across attackers
and victims. In particular, saturated links lie between the victim network
and the IX.

3.3.2 Internet eXchange Points

IXs are interconnection points between Autonomous Systems (ASs) on the
Internet. The ASs directly communicate with each other on the IX using
the Border Gateway Protocol (BGP). The networks exchange their routes
and forward packets based on route information. ISPs can reduce and load
balance their transit traffic through peering relationships on the IX. In gen-
eral, the IX’s infrastructure is comprised of commodity Layer-2 or Layer-3
switches. At present, native connection functions are provided on the in-
frastructure. However, as we mentioned in Sect. 3.3.1, current DDoS attacks
are widely distributed on the Internet. Actually, the attack traffic may also
come from ASs that are peered to victim networks on IXs, so that the attack
traffic saturates links between the victim networks and the IXs.

www.necoma-project.eu 39 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

SDN Switches

SDN Controller

AS

AS

configure and
monitor the switches

AS

AS Operators

request configurations for
peering, filtering and mitigation

External Knowledge
Database

input threat information

Figure 3.16: An architecture of SDN-IX

3.3.3 Design of SDN IX

In our approach, we enhance security functions on the IX by connecting ASs
using SDN technologies. We designed a new IX which embeds filtering and
mitigation mechanisms. Figure 3.16 shows an architecture of the SDN IX.
The IX is comprised of the following three components: 1) SDN Switches:
in the SDN IX, we adopt SDN capable switches to connect AS networks for
dynamically and flexibly forwarding traffic on the IX; 2) IX Controller: the
controller controls and coordinates the SDN switches based on user-defined
rules. It provides peering, filtering and mitigation functions as applications;
3) Web User Interface: AS operators can manage their peering and filtering
rules. Legacy command-based configurations are not suitable for operations
on the SDN IX.

Indeed, legacy IXs are managed and configured by the IX’s operators.
The configuration mainly aims at establishing peering links between ASs.
Additionally, individual AS operators cannot configure an IX’s equipments
and do not require such operations, because the configurations on the IX
are static and are not used for any other purpose.

On the other hand, the operators are able to configure the equipments
for peering with other networks and filtering attack traffic on the SDN IX.
The operation model enables dynamical and flexible configurations by op-
erators in comparison with current IXs. Because the SDN IX is not con-

www.necoma-project.eu 40 November 30, 2015

3.3. DDOS MITIGATION AND DEFENSE ON INTERNET EXCHANGES (IX)
WITH SDN TECHNOLOGIES

figured by only a single AS operator but by multiple AS operators, the IX
switches should not be directly controlled by them to avoid misconfigura-
tions or overlapping configurations. Additionally, the SDN IX configuration
is more complex compared to current Layer-2 and Layer-3 networking, due
to the specifications of dedicated flows and actions. These configurations
should not affect any other ingress and egress traffic. Therefore, the opera-
tion model strives to maintain consistency and stability of the IX.

OpenFlow which is an instance of SDN technologies is a candidate tech-
nology for implementing the IX, but we do not restrict the implementation
of the IX to OpenFlow. We explore and adopt suitable technologies for our
implementation.

3.3.4 DDoS Defense on SDN IX

In this section, we describe how DDoS attacks are mitigated on the SDN IX.
When an AS on the IX detects a DDoS attack from other ASs, the victim
AS adds a filtering or mitigation rule on the SDN switches located in the
SDN IX. The attack traffic is effectively filtered by the deployed rules on the
switch’s incoming ports. Therefore, it can reduce bandwidth usage by the
malicious traffic on the links between the victim AS and the IX.

The rules are described in the following format {Match [Source IP ad-
dress, Source TCP/UDP port number, Destination IP address, Destination TCP/UDP
port number], Action [drop]}. The Match field specifies which packets have
to be handled by this rule. In this case, Source IP addres and TCP/UDP port
number represent the source of an attack while Destination IP addres and
TCP/UDP port number represents the victim host. The Action field defines
the switch’s behavior when a packet is matched with the Match field. The
action is set to drop. It means the packet is discarded on the SDN switch, not
forwarded to the victim AS. AS operators can specify these fields to block
incoming attack traffic.

Also, the IX plans to provide REpresentational State Transfer (REST) in-
terfaces for operators of ASs interconnected on the IX. The operators can
install configurations such as peering, filtering and mitigation rules on the
IX via the REST interfaces. Additionally, the interface can be leveraged to
enforce autonomic cyber cyberdefense. In this case, the IX can be dynam-
ically configured to block attacks based on threat information through the
API.

3.3.5 Architecture

In this Section, we describe the architecture of an SDN-based IX. SDN allows
for providing multilayer path exchange and security functions on the IX.
As a new network paradigm, SDN decouples the data plane and control
plane, giving more flexibility to networks. At the control plane, we can

www.necoma-project.eu 41 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

define new network functions as applications. In our architecture, we adopt
OpenFlow [28] to provide dynamic configurations in the architecture.

Figure 3.17 shows the design architecture of PIX-IE. PIX-IE is composed
of the following two components:

Data Plane (OpenFlow switches): The AS border routers connect to
other AS’s routers over OpenFlow switches. The switches provide the func-
tions introduced in the previous section. The switches are managed by a
PIX-IE controller.

PIX-IE Controller: composed of the following submodules. The User
Interface provides management and configuration interfaces to AS and IX
operators on a web user interface. Each Modules provides a specific func-
tion. The Negotiator checks for flow conflicts with other pre-installed entries
on the IX before writing them on the switches. If the candidate entry is val-
idated by the Negotiator, the entry is installed on OpenFlow switches by the
configurator. The Configurator handles configuration on OpenFlow switches
through the OpenFlow API. Additionally, some databases are used in PIX-IE.
The databases contain user, route and configuration information.

The PIX-IE architecture is not limited to the controller’s implemented
features. We can expand the number of supported functions by implement-
ing a new module on PIX-IE. The incremental expandability is the reason
why the IX is called Programmable Internet eXchange. The next few para-
graphs describe the design principles and features of PIX-IE.

The key feature of PIX-IE is that ISP operators can configure IX facilities
thorough the controller interface without any negotiation. Currently, IXes
do not provide user interfaces to ISP operators. On PIX-IE, the ISP opera-
tors can apply IX configurations such as path exchanges or attack filters by
themselves. The on-demand configuration dramatically changes the opera-
tion model of IXes.

Through this architecture, we adopt a proactive configuration model for
OpenFlow control. The proactive model means that any configurations for
the IX switches are predefined and managed by the controller. In OpenFlow,
a reactive model is defined, which means a flow rule is not predefined, but
the rule is defined by processing each packet on a controller. However, the
reactive model is not a practical solution on IXes, due to the large number
of flows. The flows will frequently cause control traffic from switches to
the controller called packet-in to decide how the switches should handle the
flows. The packet-in traffic will consume CPU and memory resources on the
controller. In the worst case, the controller will be halted due to complete
depletion of resources by the packet-in messages. Then, packet forwarding
will also halt, or packets will be dropped on the IX. The proactive model can
solve the problem because flow entries are not aware of packet-in on the
model.

In the proactive model, the rules must be initiated by the controller.
Therefore, the controller has to know the state of the network to avoid traffic

www.necoma-project.eu 42 November 30, 2015

3.3. DDOS MITIGATION AND DEFENSE ON INTERNET EXCHANGES (IX)
WITH SDN TECHNOLOGIES

Data Plane (OpenFlow Switches)

Configurator

Negotiator

AS Operator AS Operator IX Operator

OpenFlow APIs

・・・

User Interface

Filtering Module Path Module

Control Plane

Monitoring Module

Config

Route

User

Figure 3.17: PIX-IE Architecture

misuses. It is necessary to avoid rule conflicts [23]. Flow conflicts are not
only a problem in this particular IX use-case, but it is also a well-known
issue on OpenFlow and any other SDN technologies. In particular, conflicts
lead to incorrect packet forwarding or even packet loss on inter-domain
networks. Accordingly, the controller has to consider the state of current
flows and avoid conflicts between a new entry and the current entries. In
addition, we need to isolate the flow rules of an AS from one another to
avoid mis-forwarding or undesired filtering of other traffics.

An IX must be stable for packet forwarding as mentioned in the last sec-
tion. On SDN-based IX, the traffic is forwarded to its destination by using
predefined rules. Therefore, if the rules on the IX switches are flashed due
to troubles, the traffic forwarding is suspended on the IX. Then, traffic will
be dropped on the IXes because switches will have no entries for forward-
ing packets anymore. These failures are unacceptable to ISPs. Even in the
case an IX loses the connection between the switches and the controller, the
switches must ensure basic packet forwarding among ASes. In OpenFlow,
the controllers may install flow entries with specific parameters (idle timer
= 0 and hard timer = 0) to avoid flashing the entries by time-out.

3.3.6 Experiments

In 2015, we conducted an experiment by providing an on-demand DDoS
mitigation on Interop Tokyo 2015. We implemented an SDN IX controller
using the Ryu framework with OpenFlow 1.3.1 for demonstration purposes.

www.necoma-project.eu 43 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

09:00 10:00 11:00 12:00 13:00 14:00

Th
ro

ug
hp

ut
 [G

bp
s]

Time

Ingress Traffic
Syn Flood Filter
DNS Amp Filter

Figure 3.18: Ingress traffic volume and matched packet volume of SYN
Flood and DNS Amp filters on PIX-IE

The filtering entries include 5-tuple values as match fields. The matched
flows are dropped. The filters can be initiated via the controller’s RESt-
ful API. The API format is as follows: http://{controller.fqdn}/filter/{ingress
AS number}/{src IP}/{dst IP}/{TCP|UDP}/{src port#}/{dst port#} Filter-
ing rules are usually installed with a priority higher than the path exchange
entries because these filters must be applied to incoming packets before for-
warding them to ASes.

During the Interop exhibition, we generated two types of DDoS traffic
for our experiment purposes by using a tester from a peering network of the
ShowNet demonstration network towards internal victim IP addresses. The
attacks were SYN flood attacks and DNS Amplification attacks. We detected
the attack traffic by using Agurim, which is an sFlow analyzer[21]. After
the attack detection, we initiated filtering IX switches via the controller API.
The filtering entries were then installed on the ingress port facing the attack
source.

We successfully mitigated the attack traffic using this mechanism. Fig. 3.18
shows the amount of traffic volume that was measured on a port of the
PIX-IE switch. In the figure, the x-axis represents time, and the y-axis the
throughput of total traffic.From the figure, we can see that the filters effec-
tively dropped malicious traffic on the IX.

www.necoma-project.eu 44 November 30, 2015

3.4. LISP-BASED DDOS MITIGATION

3.4 LISP-based DDoS Mitigation

We propose a new DDoS mitigation mechanism which can eliminate attack
traffic at the attacker side using Locator/ID Separation Protocol (LISP).

3.4.1 Threat Description

In Section 3.3, we described a DDoS mitigation and defense mechanism de-
ployed at IXs. The mechanism can filter attack traffic on the IX before it
flows into the victim network. However, the IX cannot mitigate attack traf-
fic coming from transit and private-peer networks of the victim network.
Consequently, transit and private-peer links could be saturated by the attack
traffic. Even if the attack traffic is filtered on a transit ISP of a victim net-
work, the transit backbone is still suffering from the attack traffic. If the at-
tackers learn that the attack is being blocked, they might adapt their attacks
by changing their attack methods and/or sources. Therefore, it would be in-
teresting to keep the attackers oblivious of mitigation actions. Additionally,
the defense methods should be implemented as close to the attacker nodes
as possible in order to reduce traffic loads.

3.4.2 State of The Art

Before describing our proposed method, we will discuss the difficulties of
DDoS defense and existing defense methods. Existing DDoS defenses are
categorized into the following phases: prevention, detection, identification,
and routing-based mitigation. There are a variety of solutions used in each
of these individual phases.

For DDoS attacks using spoofed source IP addresses, each packet can
have a different source IP address, that is programmatically generated by the
attack programs. Therefore, victim hosts or security devices have difficulty
identifying the attack packets from the amount of traffic. Additionally, there
exist DDoS-like short-lived events on existing services, known as flash crowds
that produce traffic patterns that are similar to a DDoS attack when vast
numbers of unique users attempt to access a service. However, such traffic
is not offensive and must not be blocked.

Even if a security device unequivocally detects and identifies the sources
of an attack, IP addresses may dynamically change over time. Additionally,
according to a report from Arbor Networks [1], 77% of all DDoS attacks are
less than one hour in duration, which means that the defense has a limited
time to adapt to changes.

Usual prevention methods aim at blocking DDoS traffic in a victim net-
work. Ingress/Egress Filtering [14, 6] involves blocking packets based on
an ACL maintained at a router or a switch. Ingress filtering blocks attack
packets that attempt to enter the network by filtering lists on an L2 switch

www.necoma-project.eu 45 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

or a router. In contrast, egress filtering blocks outgoing packets from the
network. Such filtering operations have been accepted as best current prac-
tices (BCP) and are in widespread use in commercial networks. However,
this type of blocking cannot reduce the attack traffic volume between the
attacker’s network and a victim’s network.

In general, DDoS attacks are detected by IDS or IPS appliances in com-
mercial networks [39]. However, IDS/IPS appliances are prone to state ta-
ble problems when detecting such attacks. In fact, Arbor Networks [1] also
states that DDoS attack detection often fails due to state table depletion.
There are also a number of dedicated products aimed at DDoS detection
that utilize flow analysis [27], and numerous researchers have attempted
to resolve the problem of anomaly-based attack detection. However, all of
these detection algorithms still produce a number of false positives.

Blackhole routing [26, 46] is a routing-based mitigation method that
forwards malicious traffic to a null router device. However, this approach
has the potential to disrupt legitimate traffic. Another potential solution
is supplied by Arbor Networks, which provides Peakflow [3] to protect a
network against DDoS attack. This product monitors network traffic and
injects new IP routes that divert malicious traffic to a filtering device when
an attack is detected. Such products work on enterprise and ISP networks,
but they only function on the victim’s network itself, and cannot eliminate
malicious traffic between an attacker source and a victim network.

3.4.3 Proposal

To tackle this challenge, we developed a new DDoS mitigation method that
can reduce load on victim servers and networks while protecting ongoing
legitimate services. We propose a DDoS mitigation method that utilizes a
two-stage map table extension of LISP [11, 16] in a way that keeps attack-
ers oblivious to the defense efforts. While LISP was originally designed with
a single map stage for IP based routing, we built an additional map table
for the LISP architecture, which is called a mitigation table. This table is
used to forward attack traffic to a decoy server that has the same IP ad-
dress as the legitimate server. From the attacker’s point of view, therefore,
it is extremely difficult to distinguish whether the destination is legitimate
or a decoy. Additionally, since simply adding a new mapping entry to the
mitigation table can trigger the mitigation, this solution limits the scope of
reconfiguration only to the mapping table i.e., does not require the recon-
figuration of other network devices or legitimate servers. We implemented
the two-stage extension on MapServer.

www.necoma-project.eu 46 November 30, 2015

3.4. LISP-BASED DDOS MITIGATION

���
�� �	� �
���
��
� �	� �
��
�

�
���
�
��
�

�
��
�
��
��

�
��
�
���

���
����
����
�
����
��
�

�
�
����
����
�
����
��
�

Figure 3.19: Packet forwarding sequence among LISP routers and the Map-
Server.

3.4.4 Overview of LISP

LISP is a new Internet routing architecture with specifications standardized
as RFC [11, 16] by the Internet Engineering Task Force (IETF). With the
traditional IP architecture, IP addresses work as both the device and network
identifier. Contrastingly, in LISP, the address role is separated into an end
point identifier (EID) and a locator on the network. The EID is used to
uniquely identify a device on the network. A routing locator (RLOC) is a
routing point address for EIDs on the Internet.

EID and RLOC expressions can be used in the existing IPv4 and IPv6
address formats. In the separation architecture, network deployments can
be made scalable because a device’s EID addresses are aggregated by a few
RLOCs. In addition, because the separation architecture enables device mo-
bility on the network, we can move an EID network location by changing the
RLOC without the need for any configuration modifications to the device.

A packet forwarding sequence on LISP is displayed in Figure 3.19. In
this case, a client attempts to communicate with a server via the LISP infras-
tructure by sending a packet to the server (as can be seen in Figure 3.20).
This packet is then forwarded to the client side LISP router, known as an
egress tunnel router (ETR). When the ETR is receiving a packet from inside
the network, it sends a MAP request to a MapServer in order to determine
the next hop/gateway router for a destination EID. The MapServer retains
the binding information between the RLOCs and EIDs. The MapServer then
replies with the RLOC of a destination EID to the ETR. After receiving the
RLOC, the ETR encapsulates the packet and forwards it to the router that
has the RLOC. An RLOC router, which is called an ingress tunnel router
(ITR), then decapsulates the packet and forwards it to the chosen server
located in the network.

www.necoma-project.eu 47 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

��
��	��	�

������������ 	����������

�	�������������������
�	�������������������

�	�������������������
������������������

�������� ��������

��������� ���������
�������� ��������

����������

��������

��������

������������

!
"

#

$

Figure 3.20: Packet forwarding on LISP networks.

���� �� 	���
��"��

����$�
��"��

���

����� ����������
������
�����������
�

	������!��

����� ����#����������$�����$�����
�

���� ��������$����"��

���������������

Figure 3.21: Mitigation sequence on two-stage map table.

3.4.5 Two-stage Map Table Extension

We extend the mechanism to enable DDoS mitigation by dynamically re-
configuring the mapping entries on the system. Using the entries, we lead
malicious traffic to decoy servers of legitimate ones or the null interface.
On the other hand, legitimate traffic is still forwarded to legitimate servers
at the same time. The malicious traffic will be mitigated on border routers at
the source of the attacks. Therefore, the mechanism can eliminate malicious
traffic between the attacker’s and victim’s ASs.

In order to divert attack traffic to decoy servers located at network bor-
ders, it was first necessary to extend the LISP mapping system. To accom-
plish this, we began by assuming that the original and additional map tables
are manually configured by network operators. As introduced previously,

www.necoma-project.eu 48 November 30, 2015

3.4. LISP-BASED DDOS MITIGATION

����������

���
���������� 	����

�	�
�����������������

�������	���������

���
����
�� 	����������

���	���������

�	�
�����������������

�������	���������

��������

��������

��������

�������� ���������

���������

�����
�	
������

������������� ����������������

Figure 3.22: Packet forwarding on two-stage map table.

we refer to the additional map table as the “mitigation table”, while the
original map table is called the “general LISP map table”. The sequence dia-
gram of the mitigation approach based on the two-stage map table is shown
in Fig. 3.21. The mitigation sequence proceeds as follows (see Fig. 3.22).
When a network operator detects a DDoS attack on the network, he or she
registers a new map entry to the mitigation table. The entry has three fields:
a border router’s address (incoming router), a destination address (EID pre-
fix) and a router address that hosts a decoy server (locator). After the map
entry registration, the operator frees up a map cache for the incoming router
or the ETR. Next, the router needs to identify the address of attack packets
via the MapServer. If a packet is coming from the attacker, the router obtains
an RLOC that hosts a decoy server from the MapServer. Finally, the packet
is forwarded to the decoy server. If a packet is not sent from the attacker,
the MapServer sends a legitimate RLOC to the ETR. Accordingly, only attack
packets are routed to the decoy server. We call this two-map-table-based
system a “two-stage MapServer” The mitigation entry remains valid with a
timer in much the same way as a domain name system (DNS) time to live
(TTL) hop limit. When the timer expires, the ETR transmits requests for
resolving the destination IP addresses of the DDoS packets to a MapServer.
After that process, the DDoS packets will again be forwarded to the decoy
network.

We implemented the proposed method by modifying a LISP MapServer
implementation on Linux [47]. The software has a LISP router and a map
table module written in C. We then added a mitigation table and its related

www.necoma-project.eu 49 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

functions in the map table module. The module code consists of a mere 350
lines of code. In total, the MapServer source has 2126 lines.

Additionally, we need an infrastructure for hosting decoy servers which
behave as legitimate servers. The servers should be operated as legitimate
ones to avoid detection of the mitigation mechanism by the attackers.

3.4.6 Advantages

To begin with, our method can reduce the traffic load on both the legitimate
server and the network by forwarding attack traffic to decoy servers located
on the periphery of a LISP-enabled network. Additionally, our two-map LISP
extension does not require any configuration changes on a victim host be-
cause our extension can control attack traffic using only an EID and an RLOC
binding on an extended MapServer. In contrast, other routing-based miti-
gation techniques, such as black hole routing, require network operators to
modify configurations and install new routes at the routers. Therefore, the
mitigation can be applied by network service providers. Moreover, since the
decoy server has the same IP address as the legitimate server, attackers face
extreme difficulty in recognizing whether or not their target is defended.

Existing DDoS defense methods have the following three disadvantages.
The first is defense location. Almost all defense methods block attacks in
the vicinity of the victim hosts. Methods of this type assume host loads
such as network bandwidth or CPU usage can be reduced, but they even-
tually cannot eliminate the network traffic loads between the attackers and
the victim. The second disadvantage is that several mitigation methods ad-
versely impact legitimate services by filtering or dropping packets. The last
disadvantage is the lack of obliviousness against attackers, who can easily
recognize the mitigation effort from parameter changes measured by the at-
tacker nodes. For example, firewalling or ACL blocking can be recognized
by connections from multiple nodes located in other networks.

The two-stage map table extension overcomes such drawbacks of exist-
ing mitigation methods. In our proposal, we assume the attacker’s location
or the ingress routers of the attack traffic have been detected by IP trace-
back or some other method. Based on that assumption, our system leads
the attack traffic to one or more decoy servers, which behave as the victim
servers. Since the decoy server is located close to the attacker’s network,
the attacker’s traffic does not leak to outside networks. Additionally, since
the decoy servers have the same EID (IP address) as the targeted legitimate
server, attackers are unable to distinguish between them.

www.necoma-project.eu 50 November 30, 2015

3.4. LISP-BASED DDOS MITIGATION

���
����
���
�
�����

�������
�����

������
�����

�������	������

��	
��������	������

�
��
�����
��
��	��������

��	

��	

Figure 3.23: The experiment topology

3.4.7 Experiment

In this section, we evaluate the performance of our software implementa-
tion. The purpose of this experiment is to evaluate throughput and the time
required to switch routes using our extension.

3.4.7.1 Methodology

Figure 3.23 shows the network topology used in our experiment, which con-
sisted of the attacker’s network, the victim’s network and the decoy network.
All links have a bandwidth of 1 Gbps. In this experiment, each server and
router were equipped with a 2.4 GHz Intel Xeon E5620 CPU with 4 cores, 12
GB of memory and a 1000Base-T Ethernet port. The MapServer is running
on the Linux server (Debian Squeeze). Each LISP router used [47]’s LISP
implementation.

During our experiment, we measured the bandwidth of the victim and
decoy server. To accomplish this, we collected received data volume from
/proc/net/dev per second in the servers. After starting the traffic genera-
tion on attacker node, we manually freed the map-cache on the ETR and
reconfigured routing using our proposed method.

3.4.7.2 Basic Throughput

First, we tested basic performance using iperf, which is a common through-
put testing method on Linux. A single iperf source can send user datagram
protocol (UDP) packets to the victim server at a rate of 900 Mbps. In this
experiment, we manually changed the map entry at approximately 100 sec-
onds. Figure 3.24 shows a result of the experiment. After a few seconds, the
traffic was moved directly to the decoy server. This result shows that our
implementation can quickly change routes despite high traffic rates.

www.necoma-project.eu 51 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 20 40 60 80 100 120 140 160

Tr
af

fic
 [M

bp
s]

Time [sec]

Victim server
Decoy server

Figure 3.24: Traffic volume on victim and decoy server (iperf UDP).

3.4.7.3 UDP Traffic Mitigation

We then evaluated the performance of our method against a realistic UDP-
based DDoS attack using a massive amount of spoofed source IP addresses.
For the attacker role, we used an Avalanche 290, which is a commercial
traffic generator. During the experiment, we placed a load on the victim
host using the traffic generator. To simulate an UDP-based DDoS attack, we
sent UDP datagrams at the rate of 0.18 Mpps to the victim server from the
generator, spoofing 105 million unique source addresses and resulting in
700 to 900 Mbps of bandwidth usage.

Figure 3.25 shows the received traffic volume on the victim and de-
coy servers. At approximately 100 seconds on the x-axis, the traffic was
smoothly forwarded to the decoy server. The total transition time was just a
few seconds long, even though the traffic had a massive number of distinct
source addresses.

3.4.7.4 TCP Traffic Mitigation

We measured how quickly our method could mitigate a TCP based-attack by
conducting the following experiment. Here, we generated a massive num-
ber of HTTP GET requests to the victim server where virtual tester clients
downloaded 1 GB of data on each request. We then measured the traffic
bandwidth on the victim server and the decoy server using the same mea-
surement methodology adopted during the UDP experiment.

Figure 3.26 shows the forwarding volume to the victim and the decoy
on the server. In the figure, each line has a zigzag shape caused by TCP

www.necoma-project.eu 52 November 30, 2015

3.4. LISP-BASED DDOS MITIGATION

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 20 40 60 80 100 120 140 160

Tr
af

fic
 [M

bp
s]

Time [sec]

Victim server
Decoy server

Figure 3.25: Traffic volume on victim and decoy server (DNS).

congestion between the clients and the server. After 100 seconds, the traffic
was smoothly mitigated to the decoy server. Even though the destination
changed, the attacker’s TCP connections were smoothly established between
the simulated clients on the traffic generator and the server. This indicates
that an attacker would be unlikely to recognize the mitigation provided by
the decoy server.

3.4.7.5 Experiment Summary

The above mentioned experimental results demonstrate that our LISP two-
stage map extension has the potential to mitigate wire speed traffic. Since
the mitigation only takes a few seconds, both TCP and UDP DDoS attacks
would be quickly mitigated. Additionally, attackers would find it difficult
to recognize the mitigation was in process because the server responses do
not change when the mitigation takes affect. These are ideal features for
keeping the mitigation undetected by the attackers.

www.necoma-project.eu 53 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

Tr
af

fic
 [M

bp
s]

Time [sec]

Victim server
Decoy server

Figure 3.26: Traffic volume on victim and decoy server (HTTP GET).

3.5 Threat Detection and Mitigation for Public Cloud

In this Section, we describe threats against a public Infrastructure-as-a-
Service (IaaS) cloud, the impacts of different attacks, and propose ways
to mitigate such threats and attacks from the standpoint of the operator or
the administrator of the IaaS public cloud.

Typically, a public IaaS cloud accommodates a large number of virtual
machines for a large number of users. Different users share the overall
resources of the public cloud with some separation mechanisms in place.
In such environment, an incident concerning a user may affect other users,
despite the separation mechanisms.

3.5.1 Threat Description

The public cloud has become a common infrastructure for services and com-
puting. Especially, IaaS is very popular and widely deployed for migrating
current services into cloud environments. However, there are some com-
mon threats to the IaaS cloud. These threats are roughly classified into the
following three types

• information leak or cloud VM hijacking,

• denial of service inside the cloud, and

• denial of service from outside the cloud.

www.necoma-project.eu 54 November 30, 2015

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

The first threat is a threat derived from the sotware vulnerabilities of an
hypervisor. If there is a vulnerability that a cloud user can abuse to obtain
permissions or intrude other VMs, confidential data on VMs may be stolen.
In addition, the compromised VM can become a stepping stone for further
attacks.

The second threat has its roots in resource allocation. If a VM on a cloud
can exhaust network bandwidth, CPU resources, and memory resources, it
may disturb other VMs’ services. To avoid such a situation, most hyper-
visor implementations can limit the resources allocated to each VM. CPU
resources and utilization for each VM are limited by abstraction of their vir-
tual CPU (vCPU). Also, each VM has an amout of memory pre-allocated by
the hypervisor. However, network and disk I/O are not limited by default
in most hypervisor implementations. An ill-willed VM user can exhaust I/O
resources and disturb the other VMs’ services.

Another problem related to the second threat is masquerading. If the
separation of resources is not sufficient, an ill-willed VM can forge another
VM’s ARP and NDP messages, allowing the VM to send fake Router Ad-
vertisement messages to other VMs in the same network group, eventually
misleading the traffic of other VMs. As a result, the masquerading VM can
interrupt the traffic directed to other VMs and hijack sessions from users.

The third threat relates to attacks from outside the cloud. Attackers
can flood services running on a VM in the cloud with a large number of
packets. The purpose of the attacks is to stop the service, whether it is
for the challenge or for some benefit. Once such an attack begins, some
resources of the cloud, such as the network bandwidth and the network I/O
of the hypervisor may be exhausted. It follows that the services on other
VMs running on the same hypervisor may be affected by the attacks. The
service on a VM is more fragile than the service on a bare-metal server. Due
to the hypervisor overhead, the I/O processing on a VM usually consumes
twice the amount of resources compared to a bare-metal server, thus making
it easier for an attacker to exhaust virtualized resources.

3.5.2 Proposal

To prevent the interruption of services, we propose a public cloud infras-
tructure that has the following capabilities:

• monitoring the traffic bandwidth and behaviors,

• monitoring the resources including I/O performance of hypervisors,

• multiple filtering and mitigating points, and

• filtering and mitigating mechanisms cooperated with a security infor-
mation exchange system, such as NECOMAtter.

www.necoma-project.eu 55 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Internet	

Hypervisors	

Detector	

NECOMA6er	

Mi7gator	

A6ack	
 Traffic	

Legi7mate	
 Traffic	

Management	
 Network	

Figure 3.27: Countermeasure methods for cloud threats.

Monitoring the traffic bandwidth is efficient for detecting DoS attacks di-
rected at services. If the traffic bandwidth toward a specific service increases
distinctively compared to the total bandwidth, it might be a DoS attack.

Also, monitoring behaviors are important. By traffic behaviors, we des-
ignate the traffic pattern to/from a service. If the distribution of source ad-
dresses towards a specific service in a cloud is more widespread than before,
it might be an indication of scans or DDoS attacks.

It is useful to poll and collect the status of hypervisors and VMs for find-
ing abnormal behaviors inside a cloud. If a hostile user intrudes another VM
and steals a certain amount of confidential data, the traffic between VMs
using the management network will be increased. If there is an attack in-
volving spoofing a VM inside a cloud, service traffics towards VMs will also
reach the spoofed VM. We should monitor traffic behaviors at each VM from
other VMs, or outside a cloud so that we can find abnormal changes in traffic
behaviors.

In order to counter such threats, the following methods are useful.

• polling the status of hypervisors and VMs;

• monitoring the traffic flows inside and outside a cloud.

To find changes in traffic behaviors, as well as, suspicious traffics to some
VM, traffic sampling methods, such as sFlow and NetFlow, are useful. In-

www.necoma-project.eu 56 November 30, 2015

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

deed, using the sampling technology, we can detect attacks by monitoring
the traffic crossing not only physical network switches between hypervisors,
but also the traffic crossing virtual network switches (such as Open vSwitch)
between VMs.

In addition to monitoring network traffic, monitoring I/O state and per-
formance from hypervisors may be an effective innovation. If the detector
monitors the I/O state of network interfaces and storages from hypervisors,
the cloud administrator can detect malicious behaviors of user’s VMs with-
out installing a special monitoring software inside the VMs. At present,
most commercial public clouds deploy monitoring agent software inside
user VMs. The cloud administrator can then monitor the information through
the agent. However, if an attacker knows the monitoring mechanism used
by the agent, the attacker may delete or replace the agent and send fake
information to the administrators. Even if such situation happens, our pro-
posed method, i.e., monitoring I/O state and performance on hypervisors,
can detect malicious behaviors.

Once we detect such attacks, the suspicious traffic may be filtered or mit-
igated by SDN technology. Figure 3.27 shows an overview of the counter-
measure methods against the threats. The method described in the Sect. 3.3
is applicable. In the case of a public cloud, filtering and mitigating at mul-
tiple points inside of the cloud is effective, because the public cloud being
multi-tenant, the impacts of attacks and incidents should be reduced to the
minimum. Reducing the impacts can be effectively performed through coop-
eration with a security information exchange system. Because such system
can provide information external to the cloud, detection can be made at an
early stage.

3.5.3 System Design

Our proposed system design against cloud threats is shown in Fig. 3.28.
To monitor the status of VMs and hypervisors continuously, we adopt stan-
dardized protocols such as SNMP, SNMP trap, and OVSDB. If we were to
define a dedicated protocol fo monitoring, it would be difficult for the ex-
isting cloud implementations to introduce this new protocol. So we decided
to use existing and supported protocols in running implementations.

However, the standard hypervisor MIBs are not enough for monitoring
and finding malicious behaviors of VMs. Thus, we have decided to enrich
them. Furthermore, we want to avoid the need of installing some specific
agents inside each VM for monitoring and thus we propose to base monitor-
ing only on information available from hypervisors. We propose a method
for monitoring only collective resources, exclusive resources, and I/O inter-
ruption status in a hypervisor in order to supervise VM behaviors. We think
that it is a more suitable and deployable architecture for a public cloud than
using specific agents in VMs.

www.necoma-project.eu 57 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Internet	

VM	

VM	

VM	

ｖSwitch	

Flow	
 /	
 SNMP	

Monitoring	
 Node	

Hypervisors	

sFlow	

NetFlow	

SNMP	

RESTful	
 API	

NECOMACer	

Figure 3.28: System design against cloud threats

www.necoma-project.eu 58 November 30, 2015

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

�� �� ��

�����
�����������
�

Allocation

Physical Resources

Virtual Resurces

��/�����/�
��	��/���������/

���
������ ������
�

���

 ��/�

Figure 3.29: Resource Monitoring for Exclusive / Collective Resources in the
Hypervisor.

The concept is shown in Fig. 3.29. A hypervisor provides resources for
a VM, and a VM requests resources or I/O from hypervisors. If there is a
malicious VM in a cloud and the VM sends attacks to outside hosts, the hy-
pervisor I/O status used by the VM will show unusual values. If the VM
sends attacks to inside hosts, the CPU usage of the virtual switch and virtual
ethernet processes will show unusual values. We believe that the malicious
behaviors of VMs are translated into unusual values of the hypervisor re-
sources, thus we propose a polling model for the hypervisor.

Also, we propose to monitor traffics from inside and outside a cloud
using sFlow and NetFlow. A threshold-based algorithm is used for the de-
tection of malicious behaviors.

The system is composed of the following three types of modules, as well
as, the NECOMAtter system which is described in Deliverable D3.2.

Monitoring modules They are implemented and installed at the hypervi-
sor, Virtual Switches, Physical Switches, and Cloud Edge Routers. The
monitoring module at the hypervisor monitors various physical re-
sources of the hypervisor, as well as, the network traffic of physical
network interfaces. Other monitoring modules monitor network traf-
fic information using SNMP and flow technologies. The modules then
summarize the information and tweet the results to the NECOMAtter
system.

Detection module It collects the tweets from the monitoring modules and
tries to detect unusual behaviors. If the module finds unusual or ma-
licious behaviors, it tweets the mitigation information to the NECO-
MAtter system.

www.necoma-project.eu 59 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Mitigation module This module, which is deployed in the “mitigator” server
in Figure 3.27, also monitors the tweets from the detection module.
When it captures a tweet, the mitigation module extracts the point and
method to mitigate from the tweet and tries to send requests for imple-
menting access control rules on hypervisors, VMs, Physical Switches,
Virtual Switches, and Cloud Edge Routers.

The three modules are connected via the NECOMAtter system and works
as a single mitigation system.

3.5.4 Implementation

To fulfill the requirements of our proposed methods, we implemented and
deployed four pieces of software, two monitoring modules, one detection
module, and one mitigation module.

A monitoring module called ”virtsnmp” [4], implements the monitoring
methods described in the previous subsection and proposeed in RFC7666 [5].
One of the NECOMA project members contributed to defining and standard-
izing the specification, that we deployed and tested in the actual environ-
ments. Another monitoring module called “Neutron-sFlow” allows retriev-
ing sFlow information via the OpenStack’s Neutron module by means of
an OpenStack patch developed within the NECOMA project. A detection
module called “agurim” provides real-time attack detection from pcap, Net-
Flow, and sFlow datasets. It was also developed by the NECOMA project
and later improved towards its deployment. A mitigation module called
“DNS DDoS Defense and Countermeasure (d4c)” [34] provides defense and
mitigation architecture and functions in cloud and Internet Exchange (IX)
environments. This software was developed by NECOMA project.

In this Subsection, we describe the implementation of the four modules,
as well as, the overall architecture of the deployed system.

3.5.4.1 virtsnmp

The virtsnmp is an SNMP agent software. To monitor the behaviors of hy-
pervisors and VMs in a public cloud, the software collects the status of CPU,
memory, and I/O of the HDD and network without using specific agents
within the VMs, but from the hypervisors only. In previous standards, there
is no definition to access network and storage I/O for each VM running on
a hypervisor, so we supported the proposal of a standard and implemented
the mechanism in this software. The proposed architecture of MIBs for a
VM is shown in Figures 3.30 and 3.31.

The implementation architecture is shown in Fig. 3.33. virtsnmp works
as a daemon process on a hypervisor. It integrates between snmpd and lib-
virtd and collects the required information from libvirtd and the host OS to

www.necoma-project.eu 60 November 30, 2015

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

--vmMIB (1.3.6.1.2.1.yyy)
+--vmObjects(1)

+--vmCpuTable(5)
| +--vmCpuEntry(1) [vmIndex, vmCpuIndex]
| +-- --- VirtualMachineCpuIndex vmCpuIndex(1)
| +-- r-n Counter64 vmCpuCoreTime(2)
+--vmCpuAffinityTable(6)
| +--vmCpuAffinityEntry(1) [vmIndex, vmCpuIndex, vmCpuPhysIndex]
| +-- --- Integer32 vmCpuPhysIndex(1)
| +-- rwn Integer32 vmCpuAffinity(2)
+--vmStorageTable(7)
| +--vmStorageEntry(1) [vmStorageVmIndex, vmStorageIndex]
| +-- --- VirtualMachineIndexOrZero vmStorageVmIndex(1)
| +-- --- VirtualMachineStorageIndex vmStorageIndex(2)
| +-- r-n Integer32 vmStorageParent(4)
| +-- r-n VritualMachineStorageSourceType vmStorageSourceType(4)
| +-- r-n SnmpAdminString vmStorageSourceTypeString(5)
| +-- r-n SnmpAdminString vmStorageResourceID(6)
| +-- r-n VirtualMachineStorageAccess vmStorageAccess(7)
| +-- r-n VirtualMachineStorageMediaType vmStorageMediaType(8)
| +-- r-n SnmpAdminString vmStorageMediaTypeString(9)
| +-- r-n Integer32 vmStorageSizeUnit(10)
| +-- r-n Integer32 vmStorageDefinedSize(11)
| +-- r-n Integer32 vmStorageAllocatedSize(12)
| +-- r-n Counter64 vmStorageReadIOs(13)
| +-- r-n Counter64 vmStorageWriteIOs(14)

Figure 3.30: Proposed MIB Architecture for vCPU and vStorage.

--vmMIB (1.3.6.1.2.1.yyy)
+--vmObjects(1)

+--vmNetworkTable(8)
+--vmNetworkEntry(1) [vmIndex, vmNetworkIndex]

+-- --- VirtualMachineNetworkIndex vmNetworIndex(1)
+-- r-n InterfaceIndexOrZero vmNetworIfIndex(2)
+-- r-n InterfaceIndexOrZero vmNetworParent(3)
+-- r-n SnmpAdminString vmNetworkModel(4)
+-- r-n PhysAddress vmNetworkPhysAddress(5)

Figure 3.31: Proposed MIB Architecture for vNetwork.

www.necoma-project.eu 61 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Figure 3.32: Monitoring VM information from hypervisor.

monitor the hypervisor and the VMs. Then, it publishes the collected in-
formation to a monitoring server via the SNMP protocol. We adopted this
architecture because the necessary modifications against existing implemen-
tations are minimal.

For monitoring VMs and visualizing the collected information, the cacti3

tool is used. It collects information from hypervisor MIBs using SNMP and
visualizes the results as shown in Fig. 3.32. In addition, agurim monitors
network traffic from physical and virtual switches. The combination of re-
sults from cacti and agurim are useful for finding malicious behaviors inside
and outside the cloud.

3.5.4.2 Neutron-sFlow

We made an extension of OpenStack4 Neutron for retrieving sFlow infor-
mation. OpenStack is a very popular and open source implementation of
IaaS management. A VM is connected to a virtual port of the virtual switch,

3http://www.cacti.net/
4https://www.openstack.org/

www.necoma-project.eu 62 November 30, 2015

http://www.cacti.net/
https://www.openstack.org/

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

Physical machine

Host OS Hypervisor

IF-MIB

HOST-RESOURCE-MIB

snmpd virtsnmp

libvirtd

Virtual Machines

Monitoring
Server

SNMP

libvirt API

Figure 3.33: Proposed Architecture to collect information for Hypervisor
and VMs.

so if the operator can monitor the network flows of each virtual port sep-
arately, the flows between VMs are easily monitored. When OpenStack is
deployed as an IaaS, Open vSwitch is also installed as a virtual switch in-
side the hypervisor. It has the capability to export sFlow information, but
Neutron, OpenStack’s network controller, does not provide the method to
retrieve this information. Hence, a patch was made by a member of the
NECOMA project and is available online5.

3.5.4.3 agurim

agurim is a network traffic monitor based on flexible multi-dimensional flow
aggregation to identify significant aggregate flows in traffic. A network ad-
ministrator can dynamically switch views based on traffic volume or packet
counts, address or protocol attributes, with different temporal and spatial
granularities. The supported data sources are pcap, sFlow, and NetFlow.
Also, we developed DDoS detection modules which can work with NECO-
MAtter, the security information exchange component described in Deliver-
able D3.3.

The main view provides dual plots, a volume-based plot on the left and
a packet-based plot on the right. Each plot presents the seven most signif-
icant aggregate flows, by default. The legend label shows each aggregate
flow with the main attribute and its share of the total traffic, along with
the sub-attributes and their shares within the aggregate flow. In the address
view, the main attributes are the source and destination addresses, and the
sub-attributes are the protocols. In the protocol view, the main attribute is

5https://gist.github.com/upa/fd91ff40908b070b7173

www.necoma-project.eu 63 November 30, 2015

https://gist.github.com/upa/fd91ff40908b070b7173

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

the protocol, and the sub-attributes are the addresses. Addresses are pre-
sented with their prefix length when aggregated. The detection algorithm
is threshold-base. If the top seven aggregated flows include a /32 IPv4 des-
tination flow or a /128 IPv6 destination flow, it may indicate the presence
of a malicious flow. The detection module posts the flow information to
NECOMAtter.

Using agurim for cloud monitoring, the operator can find discriminative
traffic behaviors. It mostly depends on the flow traffic volumes, but agurim
can render separate views based on the collected information. So the oper-
ator can define the granularity of a set of collected flow information. This
means the operator can make views per hypervisor and per VM, for instance.

The software was originally implemented by a member of the NECOMA
project and enhanced to detect network anomalies for this project. The
details of agurim are described in [22]. The software is available online6,7.

3.5.4.4 d4c

d4c was developed for mitigating attacks both from outside and inside the
cloud. It was developed mainly for mitigating DNS DDoS attacks. However,
the methodology is applicable not only to DNS-based attacks, but to other
types of DDoS attacks as well. We are currently developing other modules
to extend d4c.

Figure 3.34 shows the overview of a d4c deployment. When a malicious
traffic is detected by agurim, the OpenFlow controller of the public cloud
sends messages to both d4c and the OpenFlow switches, which then leads
malicious flows to d4c. There, d4c mitigate DNS packets bearing specific
patterns. After d4c has filtered the malicious DNS queries, it forwards only
proper DNS queries to VMs inside or outside the public cloud. Currently,
d4c can mitigate DNS queries using DNS QNAME patterns, and the patterns
are specified by the options. It uses netmap [37] technology for performing
the high-performance mitigation. The software is publicly available online8.

d4c is an example implementation of our proposed mitigation concept.
The key points of our proposed concepts are (1) finding malicious behav-
iors through various monitoring points, (2) separate the malicious network
flows from normal flows, and (3) analyze the malicious flows with deep in-
sights using mitigation software. To instantiate the concept, various kinds
of network monitoring and mitigation points are needed in a cloud system.
We call this mitigation architecture as ”demand-and-opportunity based mit-
igation.”

6http://mawi.wide.ad.jp/~agurim/about.html
7https://github.com/necoma/agurim/
8https://github.com/upa/d4c

www.necoma-project.eu 64 November 30, 2015

http://mawi.wide.ad.jp/~agurim/about.html
https://github.com/necoma/agurim/
https://github.com/upa/d4c

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

Open vSwitch

d4c

OpenFlow
Controller

OpenFlow Switches

Malicious Flows

Proper Flows

Hypervisors

�� �� �� �� ��OpenFlow
Messages

Internet

Figure 3.34: Deployment Overview of d4c.

3.5.5 Results

Using a combination of four pieces of software, we implemented our pro-
posed threat detection and mitigation system for a public cloud. As a testbed
for the system, we used a public cloud called “WIDE Cloud” [42]. The Cloud
is a public IaaS cloud for researchers and students, available to be freely
used by anybody who joins the WIDE Project9. Over 100 users were regis-
tered, and 400 VMs were running as of November 2015.

Figure 3.35 shows the operational flows of the implemented system. The
detector collects various information such as SNMP, sFlow, NetFlow, and
syslog. Then, the NECOMAtter BoT working in the detector analyzes the
collected data and try to find malicious behaviors. The collected informa-
tion is also sent to MATATABI and recorded. If it finds malicious behavior, it
posts information to NECOMAtter, the mitigator and human operators. The
mitigator monitors the timeline of NECOMAtter. If it finds a post that needs
a response, it takes the appropriate pre-defined action to trigger the miti-
gation mechanisms, physical switches, and virtual switches. In the case of
a simple incident such as an NTP amplification attack, the mitigator pushes
filtering ACLs to physical switches automatically. However, if the incident is
not well-known and difficult to defend against, the human operator should
ultimately decide to enable the mitigation or not. The system was imple-
mented into the WIDE cloud and routinely worked for daily operation.

9http://www.wide.ad.jp

www.necoma-project.eu 65 November 30, 2015

http://www.wide.ad.jp

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Hypervisor

Virtual/Switch

Physical/Switch

Detector
(agurim,/cacti,/virtsnmpd,/

neutron<sflow,/

NECOMAtter BoT)

MATATABI
NECOMAtter

Mitigator
(NECOMAtter BoT)

SNMP/(virtsnmpd //cacti)/from/Hypervisor

sFlow (neutron<sflow)/from/Virtual/Switch
NetFlow //sFlow (agurim)/from/Physical/Switch
Syslog/from/Hypervisor/ and/switches/

Post

Detecting/malicious/behaviors

by/agurim +/NECOMAtter BoT
Posting/malicious/behaviors/to/NECOMAtter

Monitoring
the/posts

Monitoring/NECOMAtter timeline/and/

launch/the/mitigation/mechanisms
< flow/redirection/rules/in/switches
< d4c

< Filtering/ACL

Recording/information/of/SNMP,/

sFlow,/NetFlow,/and/syslog

Posting/malicious/behaviors

detected/by/MATATABI/BoT

Based/on/NECOMAtter timeline,

controlling/switches/and/mitigation/
mechanisms/by/OpenFlow,/ovsdb,/and/
restful/API.

Mitigation/

Mechanism

Public/Cloud

Decision/by/Human/Operator

Figure 3.35: System flow diagram of the implemented system.

3.5.5.1 Malicious behaviors detected by agurim

agurim found malicious traffic behaviors in the WIDE Cloud. Figure 3.36
shows the screen capture of NECOMAtter. agurim posted malicious network
behaviors to NECOMAtter. Each of the posts includes IP addresses, proto-
col numbers, port numbers, and its share of the whole traffic bandwidth.
agurim found the distinctive flows and aggregated the information, before
rendering it. According to the aggregated information, the NECOMAtter
BoT for agurim picked up the information about the first occurrence of the
event, as well as, the information about the event exceeding the monitor-
ing threshold, and posted to the NECOMAtter feeds. Table 3.5 shows the
malicious behaviors detected by agurim, from July to November in 2015.

Based on the posted information, the mitigation mechanisms such as
flow redirection rules, d4c, or ACL filtering are launched by the mitigator.

3.5.5.2 Evaluation of the mitigation performance

To demonstrate the performance of our concept, “demand-and-opportunity
based mitigation”, we evaluated the mitigation performance of the d4c im-
plementation. As described before, d4c can filter malicious DNS queries by
specifying the contents and condition. For simple evaluation, we evaluated
the throughput performance with the following conditions.

www.necoma-project.eu 66 November 30, 2015

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

Figure 3.36: Screenshot of the posts by agurim on NECOMAtter (Partially
masked).

www.necoma-project.eu 67 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

 0

 0.5

 1

 1.5

 2

1 5 10 15 20 25

bi
t p

er
 s

ec
on

d
(G

bp
s)

match depth

while changing match depth

Figure 3.37: Throughput of DNS packet forwarding with text matching on
one QNAME.

1) Throughput of DNS packet forwarding with no condition

2) Throughput of DNS packet forwarding with text matching on one QNAME

3) Throughput of DNS packet forwarding with text matching on several
QNAMEs

The evaluation environment is shown in Table 3.6. The dummy DNS
packets are sent using an IXIA hardware network tester, with a 10Gbps Eth-
ernet interface, and evaluate the throughput of received packets.

Table 3.7 shows the result of the evaluation on scenario 1). When the
packet size is larger than 512 kbytes, the performance is almost wire-rate.
However, normal DNS inquiries with QNAME do not exceed 512 kbytes, so
the result for 64-byte packets is also important. The implementation of d4c
uses netmap[37] for its packet I/O. So one physical CPU core is allocated
to one 10Gbps Ethernet. The results can be interpreted as the maximum
performance of one CPU core with one 10Gbps interface. If the server has
enough CPU cores and 10Gbps interfaces, the maximum performance will
increase. However, we think that 2.02Gbps is enough for mitigating DNS
inquiries.

Figure 3.37 shows the result of the evaluation of scenario 2). In this
evaluation, the length of the QNAME parameter is changed. Usually, a DNS
QNAME is a Fully Qualified Domain Name (FQDN), and the name is sep-
arated into several levels by dots. The dummy packets generated by the
tester include a QNAME. The “match depth” in the graph shows the number
of domain name levels (separated by dots) in the QNAME. For example, the
depth of ”xxx.zzz” is two, and the depth of ”xxx.yyy.zzz.aaa.bbb” is five. The
performance decreases as the depth increases.

The result of the evaluation of scenario 3) is shown in Figure 3.38.
In this evaluation, the number of QNAME varies. In the previous evalu-

www.necoma-project.eu 68 November 30, 2015

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

 0

 0.5

 1

 1.5

 2

1 5 10 15 20 25 30 35

bi
t p

er
 s

ec
on

d
(G

bp
s)

number of entries

match depth is always 5

Figure 3.38: Throughput of DNS packet forwarding with text matching on
several QNAMEs.

ation, the number of QNAMEs was constant (one), but the length of the
QNAME changed. The “number of entries” represents the number of speci-
fied QNAMEs for mitigation. The depth of each QNAME is five.

From the above evaluations, the concept of “demand-and-opportunity
based mitigation” has proven to be feasible. The number of servers for mit-
igation could be increased when a greater throughput is needed for mitiga-
tion.

www.necoma-project.eu 69 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Table 3.5: Detected malicious behaviors by agurim

Date and Time (JST) IP address Description
2015/11/24 19:06:01 203.178.XXX.48 https
2015/11/24 09:06:05 203.178.XXX.48 https
2015/11/13 07:06:01 203.178.XXX.142 https
2015/11/08 08:06:02 203.178.XXX.19 NTP amp
2015/11/08 08:06:02 203.178.XXX.52 NTP amp
2015/11/04 02:06:01 203.178.XXX.19 UDP flood
2015/11/02 04:06:02 203.178.XXX.19 UDP scan
2015/10/28 07:06:01 203.178.XXX.200 http
2015/10/26 05:06:01 203.178.XXX.19 UDP scan
2015/10/17 23:06:02 203.178.XXX.177 NTP amp
2015/10/01 08:06:02 203.178.XXX.42 http
2015/10/01 02:06:02 203.178.XXX.177 NTP amp
2015/09/19 01:06:02 203.178.XXX.100 DNS amp
2015/09/18 05:06:01 203.178.XXX.210 NTP amp
2015/09/17 02:06:02 203.178.XXX.80 unknown
2015/09/10 06:06:02 203.178.XXX.42 NTP amp
2015/09/06 05:06:01 203.178.XXX.175 unknown
2015/09/02 08:06:02 203.178.XXX.175 unknown
2015/09/01 07:06:03 203.178.XXX.177 NTP amp
2015/08/29 09:06:01 203.178.XXX.210 NTP amp
2015/08/15 08:06:01 203.178.XXX.80 http
2015/08/05 02:06:02 203.178.XXX.80 rsync
2015/07/13 05:06:02 203.178.XXX.142 TCP scan
2015/07/06 08:06:01 203.178.XXX.208 unknown
2015/06/30 11:06:01 203.178.XXX.208 TCP scan
2015/06/19 14:06:01 203.178.XXX.80 unknown
2015/06/06 22:41:07 203.178.XXX.206 http
2015/06/02 13:06:02 203.178.XXX.8 GRE

Table 3.6: Evaluation environment

Server DELL PowerEdge R430
CPU Intel Xeon E5-2603v3 x 2 (total 12 cores)
Memory 64GBytes
Network Interface Card Intel X520-DA2

www.necoma-project.eu 70 November 30, 2015

3.5. THREAT DETECTION AND MITIGATION FOR PUBLIC CLOUD

Table 3.7: Throughput of DNS packet forwarding with no condition

Packet Size pps bps
64byte 4.21M 2.02G
512byte 2.32M 9.53G
1500bytes 821K 9.84G

www.necoma-project.eu 71 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

3.6 Improving Cloud-based Intrusion Detection through
High-Performance Virtualization

In this Section, we describe an intrusion detection system for cloud environ-
ments taking advantage of performance-improving technologies provided
by hypervisors.

3.6.1 Proposal

Managing many virtual machine instances is a complex procedure achieved
by the virtualization software. This vast and complex piece of software is
prone to attacks due to vulnerabilities that may exist in its code. A ma-
licious VM can take advantage of these vulnerabilities to attack the other
VMs hosted on the same physical machine. In this section, we describe the
implementation and the results of a cloud-based intrusion detection system
(IDS) based on Single Root I/O Virtualization technology (SR-IOV). In the
following paragraphs and sections we introduce an overview of our system
and the results obtained. The implementation is based on the Snort IDS
which was integrated with Xen hypervisor10. We also used other free and
stable components such as BASE, Apache MySQL and Barnyard2 in order to
monitor all inter- and intra-hypervisor traffic and display real-time results
via a Web interface.

3.6.2 Tools and Technologies

This Section lists different tools and technologies on which our proposal
builds.

3.6.2.1 The Snort IDS

Snort11 is one of the most widely used open source Network Intrusion De-
tection Systems (NIDS). It has a rule set that contains about 10000 rules.
Searching every packet for all of these strings requires significant resources,
both in terms of the computation capacity needed to process a packet, as
well as, the amount of memory needed to store the rules. Snort from ver-
sion 2.6 and onwards uses only flavors of the Aho-Corasick algorithm for
exact-match pattern detection. Specifically, it contains a variety of imple-
mentations that are differentiated by the type of finite automaton they use
(NFA or DFA), and the storage format they use to keep it in memory (full,
sparse, banded, trie, etc.). It should be mentioned, however, that the best
performance is achieved with the full version that uses a deterministic finite

10http://www.xenproject.org/
11https://www.snort.org/

www.necoma-project.eu 72 November 30, 2015

http://www.xenproject.org/
https://www.snort.org/

3.6. IMPROVING CLOUD-BASED INTRUSION DETECTION THROUGH
HIGH-PERFORMANCE VIRTUALIZATION

automaton (DFA) at the cost of high memory utilization. According to the
extensive knowledge we compiled on Snort IDS12, we thus chose it for the
cloud-based intrusion detection of the current implementation.

3.6.2.2 SR-IOV Technology

SR-IOV feature was used because it provides better I/O performance than
the traditional method of triggering a DMA operation whenever a VM is will-
ing to use the network interface. This means that an interruption of the CPU
was avoided by using SR-IOV. Otherwise the hypervisor should translate the
memory address of this DMA operation to the one in the corresponding hosts
address space.

3.6.2.3 Logging and Results Presentation

The Snort IDS produces a large amount of output in text and binary format.
We have used the Barnyard213 library in order to parse those logs and insert
the data into a MySQL database. The Barnyard2 interpreter allows Snort
to write to the disk in an efficient manner, oblivious of network traffic loss,
thus allowing Snort to log all outputs to a MySQL database via Barnyard2.
The results stored in the database are then displayed in a Web interface
through BASE14 (Basic Analysis and Security Engine). The BASE tool is
able to search and process the database containing the security event logs
stored by Snort. The tool is also capable to display both layer-3 and layer-4
packet information as presented in the respective figures. The results are
then presented to a Web interface via an Apache HTTP server.

3.6.3 Architecture and Results

The system’s architecture is presented in Figure 3.39. The intra-hypervisor
communication is achieved via the Linux bridge. Snort instance is running
on Dom-0 and is able to monitor all available network interfaces (ethX,
bridge and all vifX.Y) used by the VMs of the system.

12http://dcs.ics.forth.gr/Activities/Projects/snort.html
13https://github.com/firnsy/barnyard2
14 http://sourceforge.net/projects/secureideas/

www.necoma-project.eu 73 November 30, 2015

http://dcs.ics.forth.gr/Activities/Projects/snort.html
https://github. com/firnsy/barnyard2
http://sourceforge.net/projects/secureideas/

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

Figure 3.39: The architecture of the cloud-based IDS implementation.

The network traffic that is produced by either Dom-0 (Host OS) or Dom-
X (the VMs) is captured by Snort which produces logs. Figure 3.40 and
Figure 3.41 present the results of the data captured by Snort while operating
in such a system.

Figure 3.40: An overview of the data captured by Snort with the help of
BASE engine.

www.necoma-project.eu 74 November 30, 2015

3.6. IMPROVING CLOUD-BASED INTRUSION DETECTION THROUGH
HIGH-PERFORMANCE VIRTUALIZATION

Figure 3.41: Alerts captured for the respective VMs of the system.

The system administrator can navigate through the Web interface and
focus on specific traffics of the respective VMs monitored. Future work on
the described implementation could include the usage of custom filters to
separate the traffic produced per VM in order to provide clearer results to
the user of the system.

www.necoma-project.eu 75 November 30, 2015

CHAPTER 3. INFRASTRUCTURE-LEVEL CYBERDEFENSE MECHANISMS

www.necoma-project.eu 76 November 30, 2015

4
Endpoint-level Cyberdefense Mechanisms

This Chapter groups the description of endpoint-level defense mechanism
prototypes, allowing improved resilience for browsers and smartphones.
These mechanisms are protecting directly the end-user against phishing at-
tacks and malware.

• Section 4.1 describes how users with different level of expertise can be
protected against phishing websites. The mechanism uses eye move-
ment tracking to ensure that the user sees the information that is most
relevant to determine whether a website is a phishing site or not.

• Section 4.2 describes a defense mechanism deployed on Android smart-
phones protecting the user against malware making calls or sending
messages to premium numbers.

• Section 4.3 describes offloading the firewall function from smartphones
to wireless access points.

4.1 Improving Resilience through Personalization

In this Section, we describe means to counter phishing websites with eye
movement tracking, via a browser extension, and by adapting the defense
to the user’s level of experience.

4.1.1 Threat description

Phishing is a fraudulent activity defined as the acquisition of personal infor-
mation by tricking an individual into believing the attacker is a trustworthy
entity. The number of phishing sites is still growing. According to trend
reports published by the Anti-Phishing Working Group [2], the number of
reported phishing sites was 44,212 in March 2014, far surpassing the 25,630

77

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

(a) Novice users (b) Experts

Figure 4.1: Eye-tracking in a phish-
ing site

(a) Novice users (b) Experts

Figure 4.2: Eye-tracking in a legiti-
mate site

in March 2008. The annual worldwide impact of phishing in 2013 could be
as high as $5 billion [38].

Phishing attackers lure people through the use of a phishing email, as if
it was sent by a legitimate corporation. Email recipients are then attracted
to a phishing site, which is the replica of an existing web page, and are
fooled into submitting personal, financial, and/or password data.

4.1.2 Overview of Resilient Defense for Phishing

In order to improve resilience for phishing prevention, we would like to in-
troduce two key terms - Personalization and Information Pipelining. Person-
alization here means adjusting cyberdefense to each end-user. The resilient
defense mechanism involves the recognition of users’ awareness when vis-
iting trustworthy or phishing websites, and the differentiation of defense
measures according to the type of user. Information Pipelining for resilient
phishing protection needs to interconnect defense modules developed in our
Work Package 2 for providing suitable defense for the users.

The recognition of awareness is a fundamental concept for determining
the skills of a user. We consider such case in which a user assesses a website
by its contents, and ignore meaningful signals displayed in the browser’s
address bar. Figures 4.1 and 4.2 respectively show the heat maps of the eye
fixation locations and durations on both phish and legitimate website for
novice users (a) and expert users (b). The red color denotes the areas that
attracted the user’s gaze the most and green denotes moderate gaze activity.
In the phishing case, the novice looked at the web content but ignored the
browser’s address bar while assessing credibility, as shown in Figure 4.1a.
Since the text and visuals in phishing sites are quite similar to the ones in
legitimate sites, the novice failed to label the phishing site correctly. In the
legitimate case, the novice also only paid attention to the content of a web
page as shown in Figure 4.2a. By contrast, an expert tends to evaluate the
site’s URL and/or the browser’s SSL indicator rather than the contents of
the web page to judge the credibility of the sites, as shown in Figures 4.1b
and 4.2b.

www.necoma-project.eu 78 November 30, 2015

4.1. IMPROVING RESILIENCE THROUGH PERSONALIZATION

Browser
Extension
Module

PDP
Module

EyeBit+ Architecture

Eye-Tracking
Module

Eye-Tracking DeviceBrowser

Analysis
Modules

Figure 4.3: The architecture of EyeBit+

We therefore hypothesized that the analysis of eye movement on the par-
ticular areas of interest (AoIs) would allow to extract what are the criteria
that helped the user in making a trust decision. To assess our hypothesis, we
conducted two types of participant-based experiments. In the first experi-
ment, we analyzed the correlation between eye movements and decision
criteria to confirm whether eye fixations can be used as decision criteria in-
dicators. The second experiment investigated whether the eye movement
allows to estimate the likeliness of a user to fall victim to phishing.

Our results showed that the average error was 32.4% if users assessed
the credibility of the website by paying attention to web content, 21.3% if
users looked at the URL of the site, and 13.5% if users checked the secu-
rity information of the browser. We also verified our ability to predict the
likelihood that users may fall victim to phishing attacks on the basis of the
analysis of their eye movement patterns, and found that it can be estimated
with a probability of 79.3%. Further, we observed that experts would try to
find some trustworthiness information as soon as they have begun browsing
the websites.

4.1.3 Implementation

This section demonstrates the implementation of our personalized phishing
protection system, named EyeBit+, which upgrades the proof of concept of
EyeBit [31], for interacting with analysis modules developed in WP2.

www.necoma-project.eu 79 November 30, 2015

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

4.1.3.1 Personalization

The requirements of components for personalization are as follows.

• Web inputs control via reconfiguration.
The module must have functions to activate/deactivate web input
forms. EyeBit deactivates all input forms, at first. When it detects
that the user has checked the browser’s address bar, all input forms
are then activated.

• Eye-tracking capabilities.
The module must interact with eye-tracking devices, and identify that
the user has looked at a particular portion in the web browser with
certainty. It also should provide interfaces to obtain an end-user’s eye
position from third-party developed application.

• Address bar localization.
The module should be able to locate the address bar within the screen.

The architecture is shown in Fig. 4.3. It consists of (i) an eye-tracking
module, (ii) a browser extension module, and (iii) a PDP module. In order
to meet the requirements, we implemented EyeBit as a browser extension.
The module deactivates all input forms at first, and then activates them
after the eye-tracking module has confirmed that the user looked at the
address bar. The task of the eye-tracking module is to interact with an eye-
tracking device. We selected an eye-tracking camera which could provide
an interface to obtain an end-user’s eye position from our implementation.

Our prototype was implemented as an extension of Google Chrome,
therefore written in JavaScript, and consisted of roughly 100 lines of code.
We also selected Eye-Tribe-Tracker1 as the eye-tracking device. Its soft-
ware development kit (SDK) allows to program APIs to communicate with
eye tracker web server which capture and return user’s eye positions in
JavaScript Object Notation (JSON) format. Eyebit+ can then retrieve values
from this server via HTTP transactions.

Due to the performance difference, this device could not correctly deal
with eye-fixation, however, our implementation checked if the user looked
at the area of the address bar and 50 pixels of margins on each side. It stored
the 30 seconds of eye-tracking records, and inspected his/her gaze position
in one-second intervals, and reactivated the forms when the position of the
gaze was in the area for at least one time interval.

The algorithms are shown in Algorithm 1. At the begining of the brows-
ing experience, the system deactivates all input forms in the websites. From
our observation, we recognize experts as users that will check the address
bar as soon as they begin browsing the websites. Our system provides

1The Eye Tribe Tracker: https://theeyetribe.com

www.necoma-project.eu 80 November 30, 2015

https://theeyetribe.com

4.1. IMPROVING RESILIENCE THROUGH PERSONALIZATION

Algorithm 1 Pseudo Code of Personalization Component
for all websites do

Deactivate web input forms
if a user see the address bar at time T then

if T < 5 seconds then
A user is expert
Check with ATOS’s algorithm
if the website is labeled as phishing then

Deactivate input form
else

Activate input forms
end if

else if 5 ≥ T < 10 seconds then
A user is the average type
Check with ATOS algorithm
if the website is labeled as phishing then

Deactivate input form
else

Check with UT algorithm
if the website is labeled as phishing and its confidence is high then

Deactivate input form
else

Activate input forms
end if

end if
else

A user is novice
Check with ATOS algorithm
if the website is labeled as phishing then

Deactivate input form
else

Check with UT algorithm
if the website is labeled as phishing and its confidence is medium or high then

Deactivate input forms
else

Activate input forms
end if

end if
end if

end if
end for

ATOS’s high precision phishing detection for experts. If the algorithm la-
bels the site as legitimate, the system reactivates all input forms. It should
be noted that the algorithm works faster and achieves high precision in
compensation for recall; it does not label legitimate sites as phishing, but
sometimes labels phishing sites as legitimate if the phishing site is sophis-
ticated enough. If the number of dots in the URL is reasonably lower, this
algorithm often labels a site as legitimate.

For the average users, we would like to provide another defense, UT’s
machine learning-based phishing detection. It checks information of regis-
tered domains, popularity of contents, suspicious links, symbols and forms
as well as the number of dots in the URL. This algorithm calculates the like-
lihood of the site to be a phishing one, and also outputs the confidence for
its detection results. We can categorize its confidence into low, medium, and

www.necoma-project.eu 81 November 30, 2015

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

high. The site seems to be definetely phishing if the confidence is high. The
medium confidence means it seems to be legitimate but has a possibility of
being a phishing site. For the average users, our system provides ATOS’s and
UT’s algorithms. Even if the ATOS’s algorithm labels the site as legitimate,
it is still deactivated if the site was deemed to be phishing one with a high
confidence rate.

In the case of novice users, who often fail to make the correct decision,
the system should emphasize the elimination of all potential phishing web-
sites. The algorithm works similiarly as for the average user, but the system
activates input forms only when the ATOS’s algorithm judges the site legiti-
mate and UT’s algorithm has deemed that there is a low level of confidence
to consider the site as a phishing one.

4.1.3.2 Information Pipelining

The overview of our information pipelining is shown in Fig. 4.4. Our re-
silient cyberdefense system, the policy decision point (PDP), communicates
with the web browser extension which is the policy enforcement point (PEP)
of the proposed design. The PEP also takes inputs from an eye-tracking
camera which acts as a sensor. Additionally, it includes analysis modules
developed in Task T2.3 (Threat Analysis Platform). The initial workflow is
as follows.

Phase 1 After an end-user starts browsing, a browser extension retrieves
his/her eye movement records with an eye-tracking camera, as well as
the website’s URL.

Phase 2 The browser extension module sends the URL and the user type to
the PDP module (novice, expert, etc.2).

Phase 3 If the end-user is an expert, the PDP sends the URL to the phishing
analysis module provided by ATOS. It only checks the domain name,
so response time might be very short. If the end-user is neither an
expert nor a novice, the PDP sends the URL to both phishing analysis
modules. UT’s module analyzes contents and reputation, so it needs
more time compared to ATOS’ module. If the user is a novice, the
PDP sends a request to the IP address, DNS, and AS number analyses
modules.

Phase 4 Each module returns its analysis results to the PDP. Analysis results
would differ for each type of users.

Phase 5 The PDP sends the decision results to the PEP.
2A novice is a user not used to check the address bar while an expert quickly checks the

bar while browsing. Intermediate levels/patterns may apply as well

www.necoma-project.eu 82 November 30, 2015

4.1. IMPROVING RESILIENCE THROUGH PERSONALIZATION

Browser
extension

Eye Tracking
Camera

(1)

PDP

Phishing
Analysis
(ATOS)

Phishing
Analysis

(UT)

(3)C

(2)

(3)A

Analysis platform

(5)

(4)A (4)C

IP, DNS, AS
Analysis

(NECOMA)

(3)B (4)B

(1) (6)

Figure 4.4: Design overview of personalized defense.

Phase 6 The PEP commits changes to defend the user, e.g., blocking, alert-
ing, or deactivating web input forms.

Next, for each phase, we will describe the data flow between compo-
nents.

4.1.3.3 Phase 1: Interaction with the browser extension

As a component of the browser, the browser extension can retrieve a URL
which was just visited by the end-user. It also monitors users’ behavior,
e.g., eye movements. The mechanism was already developed in [31] and
is currently available for download. The EyeTracking Module3 bridges eye-

3https://github.com/necoma/eyebit_server

www.necoma-project.eu 83 November 30, 2015

https://github.com/necoma/eyebit_server

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

{

"address": [

{

"ip": xxx.xxx.xxx.xxx

"asn": xxxx

],

"category": "phish",

"source": "name",

"url": "http://...."

}

Figure 4.5: Request message from the PDP to the analysis module in Phase
3

tracking devices with the browser extension. Eye-Tribe provides an SDK to
output JSON-formatted data containing eye position in the screen and its
status, e.g., eye fixation. The module therefore can identify whether the
users look at the browser’s address bar or not. We assume that modern web
browsers do show the website’s URL and security information in the address
bar.

4.1.3.4 Phase 2: Message from the browser extension to the PDP

Based on the eye tracking results, the PDP module will categorize users into
three types: experts, novices, and others. The tentative categorization is
explained as follows: experts are users that look at the address bar within
5 seconds after they start browsing a web site; novices are users who never
check the bar; the rest of users are categorized as others.

It should be noted that we initially thought that NECOMAtter was avail-
able for exchanging messages between the browser extension and PDP mod-
ules. However, due to privacy concerns, we re-designed our architecture in
order to incorporate the PDP module into EyeBit+.

4.1.3.5 Phase 3: Message from the PDP to analysis modules

The conversation in phase 3 can be described using a JSON object as shown
in Figure 4.5. The PDP selects the suitable analysis module according to the
type of the user. It then requests the module with a URL. If necessary, it also
requests the module using the IP address, and the AS number.

www.necoma-project.eu 84 November 30, 2015

4.1. IMPROVING RESILIENCE THROUGH PERSONALIZATION

{

"address": [

{

"ip": xxx.xxx.xxx.xxx

"asn": xxxx

],

"category" : "phish",

"source": "name",

"url": "http://....",

"confidence": "high",

]

}

Figure 4.6: Response message from the analysis module to the PDP in Phase
4

4.1.3.6 Phase 4: Message from analysis modules to the PDP

The conversation in phase 4 can be described using a JSON object as shown
in Figure 4.6. Each analysis module is expected to respond using the n6
format (more details are provided in Deliverable D3.2). The response might
include the analysis results with a confidence level.

4.1.3.7 Phase 5: Message from the PDP to the browser extension

Based on the response received from the analysis modules, the PDP will
decide if it provides resilient defense or not. For experts, it will adjust to
reduce false positive errors when they can identify phishing by themselves.
In contrast to that, novices cannot identify whether the site is phishing or
not, the PDP will therefore provide a defense focusing on reducing false
negative errors. The decision algorithm was described in Algorithm 1.

4.1.3.8 Phase 6: Interaction with the browser extension

According to the message from the PDP, the browser extension, as the PEP,
will enforce a defense, succesfully protecting users from phishing sites. Pos-
sible defense methodologies include compulsory blocking, deactivation of
forms, and displaying alert messages.

4.1.4 Preliminary Evaluation

This Section provides the results of our performance experiments. We pre-
pared an emulated phishing site, made from Web pages of legitimate enter-

www.necoma-project.eu 85 November 30, 2015

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

0

500

1000

1500

2000

2500

3000

1 10 20 30 40 50

M
ea

n
T

im
e

P
er

 R
eq

ue
st

 (
m

s)

Concurrency Level

UT ATOS

Figure 4.7: Stress Test Analysis of the Analysis Modules using ApacheBench

prises, in a test environment. We then performed performance evaluation
with ApacheBench, a stress test tool.

Figure 4.7 shows the benchmark results of using UT’s analysis module
and ATOS’s analysis module on several concurrency levels, i.e., the num-
ber of clients which concurrently send requests to the modules. We queried
these analysis modules via HTTPS 100 times, and observed the mean time
per request. Since UT’s analysis module needs to analyze the content with
natural language processing, we found that the overhead of the UT’s mod-
ule was greater than for the ATOS’s module. It can be naturally assumed
that there might be a trade-off between the security and the convenience
of users. However, the performance overhead for UT’s module was just a
few seconds, therefore, we speculated that the loss of convenience might be
acceptable for Web users who are likely to be victims of phishing sites.

www.necoma-project.eu 86 November 30, 2015

4.2. SMARTPHONE USER PROTECTION

4.2 Smartphone User Protection

In this section, we first describe the weaknesses in the Android ecosystem
that make it possible for SMS fraudster and premium dialer malware to
exist. Finally, we present our system which introduces significant counter-
measures against these families of malware.

4.2.1 Threat Description

Android made its first appearance on September 2008 and since then it has
managed to become the leading OS in the market, largely because of its
open source nature. IDC reports that Android leads the smartphone market
with almost 85% of the market share in the second quarter of 2014. Thanks
to its popularity, Android has become a common target for malware authors,
aiming to exploit it for their own personal gain. Cisco mentions in its 2014
Annual Security Report that of all mobile malware in 2013, 99% targeted
Android devices. Similarly, F-Secure states in its Mobile Threat Report for
the first quarter of 2014, that 99% of their findings during that period of
time were designed to run on the Android platform. One class of malware
that can cause financial loss to Android users is SMS fraudsters and premium
dialers.

4.2.2 Tools and Technologies

We will describe the tools and technologies on which our proposal builds.

4.2.2.1 Applications on Android

There are two primary sources for applications:

• Pre-Installed Applications: Android includes a set of pre-installed
applications including phone, email, calendar, web browser, and con-
tacts. These function both as user applications and to provide key
device capabilities that can be accessed by other applications. Pre-
installed applications may be part of the open source Android plat-
form, or they may be developed by a manufacturer for a specific de-
vice.

• User-Installed Applications: Android provides an open development
environment supporting third-party applications. Third-party applica-
tions can be installed from various app stores, including Google Play
Store, or even obtained from the internet and other unknown sources
as a package file.

www.necoma-project.eu 87 November 30, 2015

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

4.2.2.2 Application Security Model

The Android Application Sandbox isolates application data and code exe-
cution from other applications. Direct communication and data exchange
between applications is only possible through Binder, a kernel-level inter-
process communication (IPC) driver and core component of Android. Binder
also enables the communication between applications and the Android frame-
work (middleware). The Android framework allows applications to access
system resources (network, storage, cameras, etc.) only if the requesting ap-
plication has the permissions needed. As a result, permissions are declared
for each application by its developers. These permissions, as of Android 5.1,
are granted once and forever during installation time. In addition, users
cannot selectively reject any of them during installation or run-time.

4.2.2.3 Exploiting the Android Security Model and Ecosystem

As most users are unaware of the importance of permissions, they blindly ac-
cept any permission listed during installation time. This combined with the
ability to install applications from unknown sources and authors, creates a
significant security threat. Well known applications can be repackaged with
malicious code and distributed through third-party stores. Apps that re-
quest the permissions required to send messages (SMS, MMS) and perform
phone calls can therefore exploit the functionality provided by the frame-
work, which allows them to communicate with premium numbers, even in
the background without the user knowing. As a result, this type of malware
has become pretty common, costing users money.

4.2.3 Architecture and results

Our system requires modification of the Android core, as well as the Messag-
ing application, which is developed by Google and comes pre-installed on
every device. We also include a new system-level pre-installed application
that is required for our system to operate.

www.necoma-project.eu 88 November 30, 2015

4.2. SMARTPHONE USER PROTECTION

Figure 4.8: Execution sequence of the system

As shown in Figure 4.8, when an application attempts to initiate a phone
call or send a message, the application we introduced takes over and shows
a pop-up dialog, displaying the destination number to the user and allowing
him to either blacklist it or allow the action to be performed. In order for the
selected action to be performed, the user has to correctly solve a CAPTCHA
code or a simple mathematical operation. This implementation is secure as
third-party applications by design cannot access or alter the pop-up dialog
of any other application. The subsequent blacklists and whitelists are stored
in a private database and can be modified at any time by the user as he is
being prompted on each call and message sent. The process is displayed in
Figure 4.9.

www.necoma-project.eu 89 November 30, 2015

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

Figure 4.9: User actions for solving a CAPTCHA puzzle when sending an
SMS from the built-in Messaging app

Future work includes integrating web-sources into the system. Blacklists
could be updated periodically (e.g. once per week) with data obtained from
web servers that distribute known malicious or premium numbers and in-
forming users about the application that triggered the system. Our system
can also be improved and strengthened in scenarios where the operating
system has been modified (e.g. rooted) and thus is running in a less secure
environment.

www.necoma-project.eu 90 November 30, 2015

4.3. OFFLOADING SMARTPHONE FIREWALLING USING
OPENFLOW-CAPABLE APS

4.3 Offloading Smartphone Firewalling Using OpenFlow-
capable APs

The attack surface of today’s cyberspace has been significantly enlarged by
the rapid increase in smartphone usage and the proliferation of diverse mo-
bile applications, which introduce a large variety of zero-day vulnerabilities.
According to Schmidt et al. [41], smartphones started being targets for mal-
ware in June 2004, and as of January 2014, there are roughly 700,000 of
cumulated Android malware samples observed according to a report pub-
lished by Sophos [44].

There are many motivations for attackers to target smartphones. One is
the number of users. According to BI Intelligence, at the end of 2013, 6%
of the global population own a tablet and 22% own a smartphone, while
20% own a PC4. Another motivation is the fact that smartphones often hold
much more personal information compared to PCs, keeping detailed records
of users’ contacts and SMS history as well as sensitive account information
regarding banking, emails, social networks, etc.

4.3.1 Threat Description

Mobile malware is one of the most significant cyber threats on smartphones.
One outsanding example is iBanking, a criminal software targeting Android
terminals. According to the report from RSA [38], iBanking Mobile Bot is
controlled over HTTP or via SMS, and it allows bot herders to steal per-
sonal information by reading incoming SMS messages, intercept calls to the
phone, and obtain files as well as contact lists from the phone. It also has
a function of phone fraud which allows a bot master to gain money by call-
ing premium rate telephone service and charging the victim an expensive
toll fee. Another function of iBanking is to record audio using the device’s
microphone. Note that there are many services that require users to input
credentials such as credit card and/or PIN number over tone signaling, and
this function can recognize the context of typing by the key tones [40].

Smartphones are sometimes used in DDoS attacks. Android DDoS Ori-
gin5 is a malware controlled via SMS messages containing the target IP
address and port number. The malware is used to generate traffic from the
smartphone towards the target.

As well as malware, smartphone users are faced with phishing, since the
user interfaces for smartphones are constrained by their small screens. In
legacy personal computers, symbols indicating trust have been developed
for a long time. For example, web browsers display a padlock icon to notify
about a valid server certificate, the colour green is used in the address bar

4http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
5http://news.drweb.com/show/?i=3191&lng=en

www.necoma-project.eu 91 November 30, 2015

http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://news.drweb.com/show/?i=3191&lng=en

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

when a server is equipped with an extended validation (EV) certificate. The
users can therefore be aware of trust information. Thus, improving aware-
ness about security indicators is important in the security of user interfaces.
In the case of smartphones, there are too few principles for security aware-
ness.

4.3.2 State of the Art

Generally, smartphone platforms have a method for allowing users to grant
permission to an application that needs to access certain types of data. In
the case of Android, whenever an application wants to read the contact
list, it declares the request for this permission in its manifest file, effectively
asking users to grant the permission. If a user thinks something is wrong,
he/she may prevent the application from accessing the contact list. In the
case of iOS, a permission request dialog box appears at runtime whenever
an application first requests access to any of the following six resources: the
user’s geophysical location, the address book contacts, photos and videos,
calendars, reminders, and for Bluetooth pairing6.

The permission request process is intended to inform users about the
risks of installing applications, and hence, users can only make correct secu-
rity decisions based on permissions if they understand what the permission
warnings mean.

However, in the case of Android, users had limited understanding of the
permission warnings according to Felt et al. [13]. It should be noted that
the authors also observed that Android permissions fail to be informative
to most users, while not being completely ineffective. In the case of iOS,
Tan et al. reported that permission requests that include explanations are
significantly more likely to be approved [45].

There are also risks that users gain administrator’s privileges by “rooting”
Android or “jailbreaking” iOS. There are various motivations for their act,
however it breaks the security model and allows all applications, including
malicious ones, to access the data owned by other applications.

Another concern is the battery consumption of smartphones. Recently,
almost all client OSes are equipped with the personal firewall function.
However, there is a serious factor making the protection of the smartphone
difficult, and that is battery consumption. Firewall often acts as a service
and it stays active on the smartphone throughout the smartphone’s oper-
ation. It is therefore important to ensure it has no severe impact on the
battery [48].

6https://developer.apple.com/library/ios/releasenotes/General/
WhatsNewIniOS/Articles/iOS6.html

www.necoma-project.eu 92 November 30, 2015

https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html

4.3. OFFLOADING SMARTPHONE FIREWALLING USING
OPENFLOW-CAPABLE APS

4.3.3 Proposal Design

In order to provide a resilient protection for smartphone devices, we decided
to utilize wireless access points (APs). As we mentioned in Sect. 4.3.1, the
defense at the smartphone itself is difficult. Instead, we propose to offload
smartphone firewalling function to network switching devices.

One type of defense mechanism is URL filtering, intended to block spe-
cific web sites for all smartphones. The objective of filtering is to prevent
malware infection, botnet C&C, and phishing. In such attacks, the HTTP
protocol is respectively used for malicious applications download, commu-
nications with the bot master, and fraudulent websites access.

Packet filtering is another possible defense to prevent smartphone de-
vices from joining DDoS campaigns. Once a smartphone device is infected
with a trojan horse, it starts to send data packets to a specified host (the vic-
tim) whenever it receives a DDoS attack command. It should be noted that
the scope of DDoS mitigation is usually at the infrastructure layer rather
than the endpoints, even when protecting smartphones. However, a ma-
jor principle of DDoS protection stipulates that the mechanism should filter
DDoS traffic as close to the attacker as possible. We therefore address DDoS
mitigation at the AP, which may be the closest to the source as possible when
we consider the case of a smartphone joining a DDoS campaign.

In order to provide a resilient firewall for smartphones, we decided to
employ OpenFlow-capable wireless APs. Since OpenFlow provides power-
ful traffic control schemes, it facilitates the implementation of URL filtering
based on the packet payload, as well as packet filtering based on header
information of the network and transport protocols such as IP address, and
TCP/UDP port numbers.

Alternatively, another challenge when using OpenFlow is to reuse the
DDoS mitigation rules generated in Sect. 3.3. PIX-IE is designed to utilize
OpenFlow-based solutions, and we therefore consider that the packet filter-
ing rules developed for PIX-IE are applicable to the OpenFlow-capable APs.

In Fig. 4.10, there is a high level overview of the architecture we propose.
As we can see, APs are placed close to the smartphone devices, and provide
URL filtering to thwart smartphone malware, C&C activity, and phishing; as
well as packet filtering to prevent smartphones from participating in DDoS
campaigns.

From these considerations, the requirements of APs are summarized as
follows.

Filtering ability The APs must have the ability to protect smartphones from
malicious entities. It must therefore have the capacity to filter mali-
cious URLs and to block suspicious IP addresses.

Operability The APs should be able to scale with the load of configurations,
in a short time span.

www.necoma-project.eu 93 November 30, 2015

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

Smartphone
Malware

Phishing

C&C
Attacker

Victim node
of DDoS

Packet Filtering

URL Filtering OpenFlow Switch
/ Wireless AP Smartphone

OpenFlow
controller

Figure 4.10: An overview of smartphone protection using OpenFlow-
capable APs

Table 4.1: Specification of Wireless Access Point

Product WZR-HP-1G300H
Vendor Buffalo

CPU Atheros AR 7161 (680Mhz)
Ram 128 MB
Disk 32 MB

Ethernet AR 8136
Wireless Atheros AR9223 (2.4GHz) and AR9220 (5.0GHz) 802.11abgn

4.3.4 Implementation

We explored suitable ways for URL and packet filtering. In the case of URL
filtering, proxy servers are widely used to block the access to malicious web-
sites and we consider them well suited for this task. In the case of packet
filtering, we found that Software-Defined Network technologies can provide
powerful schemes for adding and/or deleting IP addresses in order to pre-
vent smartphone from accessing malicious hosts.

We chose Ryu7, a Python framework for OpenFlow Controller (OFC), to
develop our implementation as an OpenFlow application. Since there are
not many OpenFlow-capable wireless access points available, we installed
OpenWRT8, a Linux-based firmware for extensible configuration, into wire-

7Ryu: https://github.com/osrg/ryu
8OpenWRT: http://wiki.openwrt.org/start

www.necoma-project.eu 94 November 30, 2015

https://github.com/osrg/ryu
http://wiki.openwrt.org/start

4.3. OFFLOADING SMARTPHONE FIREWALLING USING
OPENFLOW-CAPABLE APS

Algorithm 2 Pseudo Code of Resilient Firewall

for all packets do
Read the list of suspicious IP addresses
if the source or destination IP address is listed then

Discard the packet
else

Forward the packet
end if

end for

less access points and then used Open vSwitch9 as OpenFlow Switch (OFS).
Our configuration for OFS are as follows.

Network Configuration.
We configured three types of network interfaces: namely, wireless, in-
ternet, and management interfaces. The wireless interface is used for
within the network where users’ smartphone devices are connected.
The internet interface is connected to the Internet, and the manage-
ment interface is for interacting with the OFC. We also setup a pseudo
device that we call a bridge interface, in order to forward packets be-
tween wireless and internet interfaces.

Access Point Configuration.
To accept connections from smartphone devices, each AP is configured
to support 802.11 n/g wireless networking protocols. The configura-
tion also includes the AP’s Service Set Identifier (SSID), encryption,
authentication, and signal strength.

OpenFlow Configuration.
For interactions between OFC and OFS, we assign the private IP ad-
dress to AP’s management interface, and connect to OFS with Fast
Ethernet.

Aside from OFS, our algorithm for packet forwarding runnning on OFC
is summarized as Algorithm 2. Each packet incoming to OFS will ask OFC
to check the IP address with the list of suspicious IP addresses. If it is listed,
the OFC controls OFS to discard the issued packet.

Our application developed for OFC runs an HTTP server and accepts
requests using the following APIs.

/add blocking ip/{IPADDR}
This API is for adding specified IP addresses to the list of suspicious IP
addresses.

9Open vSwitch: http://openvswitch.org/

www.necoma-project.eu 95 November 30, 2015

http://openvswitch.org/

CHAPTER 4. ENDPOINT-LEVEL CYBERDEFENSE MECHANISMS

/del blocking ip/{IPADDR}
This API is for deleting specified IP addresses from the list of suspicious
IP addresses.

/delassoc client/{IPADDR}
This API is used for deassociating a smartphone device which is as-
signed to the specified IP address.

It should be noted that the disassociation of a smartphone device is not
currently supported in OpenFlow protocols. When this API is called, it runs
similar OS commands that extract the MAC address from the IP address,
and disconnect the issued MAC address powered by IW10, a command line
configuration utility for wireless devices.

10IW: https://kernel.org/pub/software/network/iw/

www.necoma-project.eu 96 November 30, 2015

https://kernel.org/pub/software/network/iw/

5
Conclusion

We have described in this deliverable the prototype implementations of dif-
ferent defense mechanisms, a total of six for infrastructure and three mech-
anisms for endpoints.

The proposed infrastructure level mechanisms have focused on the mit-
igation of DDoS attacks in the routing equipment; and on improving the
resilience cloud infrastructures both in terms of detection and mitigation of
attacks targeting a cloud environment, as well as attacks remaining inside
the cloud. At the endpoint level we have covered phishing at the browser
level; and smartphone firewalling and protection against malware.

Even if our experimentations are to be extendend, the initial results seem
promising and as importantly, the mechanisms have been designed in a way
that allows 1) them to adapt dynamically to the current threat situation
using internal detection mechanisms and external threat information such
as produced by workpackage 2, 2) the automation of countermeasure appli-
cation, which in turn allows us to move toward more timely reactions and
limiting the risk of errors resulting from manual application, in line with our
initial objectives.

Some of the mechanisms build on tried and mature, largely deployed
technologies such as MPLS; some on more recent technologies, still in active
development, such as SDN; or even requiring further advances in technology
in order to be real world deployable like EyeBit awaiting the eye tracking
to become feasible for example in the cameras embedded in smartphones
or in computer screens. This opens up different avenues for going forward
between immediate deployements for real world experiments and preparing
for future.

There have also been changes and deviations from the designs presented
in deliverable D3.4: the actual development and experimentations have re-
vealed issues that were not seen at the design phase and requiring adapta-
tions, but this seems quite normal for any research work.

97

CHAPTER 5. CONCLUSION

Currently these prototypes make use of threat information and analysis
provided by workpackage 1 and workpackage 2 to different degrees, the
challenge of building a complete pipeline from data collection, through data
analysis to putting that analysis in action in countermeasure application
remains to be addressed in the workpackage 4.

www.necoma-project.eu 98 November 30, 2015

Bibliography

[1] D. Anstee, D. Bussiere, and G. Sockrider. Worldwide Infrastructure Security Report
2012 Volume VIII. Technical report, Jan. 2013.

[2] Anti-Phishing Working Group. Phishing Activity Trends Report - Q1, 2014. Available at:
http://docs.apwg.org/reports/apwg_trends_report_q1_2014.pdf, Aug.
2014.

[3] Arbor Networks. Peakflow. http://www.arbornetworks.com/products/
peakflow.

[4] H. Asai. Virtal monitoring of hypervisor by snmp. Available at: https://github.
com/drpnd/virtsnmp, 2013.

[5] H. Asai, M. MacFaden, J. Schoenwaelder, K. Shima, and T. Tsou. Management Infor-
mation Base for Virtual Machines Controlled by a Hypervisor. RFC 7666 (Proposed
Standard), Oct. 2015.

[6] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. RFC 3704 (Best
Current Practice), Mar. 2004.

[7] R. Bifulco and G. Karame. Towards a richer set of services in software-defined net-
works. In Proceedings of the NDSS Workshop on Security of Emerging Technologies
(SENT), 2014.

[8] R. Braga, Braga, E. Mota, Mota, and A. Passito, Passito. Lightweight ddos flooding
attack detection using nox/openflow. In Proceedings of the 2010 IEEE 35th Conference
on Local Computer Networks, LCN ’10, pages 408–415, Washington, DC, USA, 2010.
IEEE Computer Society.

[9] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. Tapas: A tool for rapid
prototyping of adaptive streaming algorithms. In Proceedings of the 2014 Workshop
on Design, Quality and Deployment of Adaptive Video Streaming, VideoNext ’14, pages
1–6, New York, NY, USA, 2014. ACM.

[10] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang.
Understanding the impact of video quality on user engagement. SIGCOMM Comput.
Commun. Rev., 41(4):362–373, Aug. 2011.

[11] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID Separation Protocol
(LISP). RFC 6830 (Experimental), Jan. 2013.

[12] F. L. Faucheur. Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engi-
neering. RFC 4124 (Proposed Standard), June 2005.

99

http://docs.apwg.org/reports/apwg_trends_report_q1_2014.pdf
http://www.arbornetworks.com/products/peakflow
http://www.arbornetworks.com/products/peakflow
https://github.com/drpnd/virtsnmp
https://github.com/drpnd/virtsnmp

BIBLIOGRAPHY

[13] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android Permissions:
User Attention, Comprehension, and Behavior. In Proceedings of the Eighth Symposium
on Usable Privacy and Security, pages 3:1–3:14, July 2012.

[14] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service At-
tacks which employ IP Source Address Spoofing. RFC 2827 (Best Current Practice),
May. 2000. Updated by RFC 3704.

[15] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda. MAWILab: Combining Diverse
Anomaly Detectors for Automated Anomaly Labeling and Performance Benchmarking.
In ACM CoNEXT ’10, Philadelphia, PA, December 2010.

[16] V. Fuller and D. Farinacci. Locator/ID Separation Protocol (LISP) Map-Server Interface.
RFC 6833 (Experimental), Jan. 2013.

[17] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris. Combining
openflow and sflow for an effective and scalable anomaly detection and mitigation
mechanism on sdn environments. Computer Networks, 62(0):122 – 136, 2014.

[18] N. Hachem, H. Debar, and J. Garcia-Alfaro. HADEGA: A novel MPLS-based mitigation
solution to handle network attacks. In 31st IEEE International Performance Computing
and Communications Conference (IPCCC), pages 171–180, Dec 2012.

[19] HP. Hp 3500 and 3500yl switch. http://h17007.www1.hp.com/us/en/
networking/products/switches/HP_3500_and_3500_yl_Switch_Series/
index.aspx.

[20] HP. Hp 3800 switch. http://h17007.www1.hp.com/us/en/networking/
products/switches/HP_3800_Switch_Series/index.aspx.

[21] M. Kato, K. Cho, M. Honda, and H. Tokuda. Monitoring the dynamics of network traffic
by recursive multi-dimensional aggregation. In Presented as part of the 2012 Workshop
on Managing Systems Automatically and Dynamically. USENIX, 2012.

[22] M. Kato, K. Cho, M. Honda, and H. Tokuda. Monitoring the Dynamics of Network
Traffic by Recursive Multi-dimensional Aggregation. In OSDI2012 MAD Workshop, Oct.
2012.

[23] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: Verifying
network-wide invariants in real time. In Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, nsdi’13. USENIX, 2013.

[24] H. Kim and N. Feamster. Improving network management with software defined net-
working. IEEE Communications Magazine, 51(2):114–119, 2013.

[25] C. Krügel, T. Toth, and E. Kirda. Service specific anomaly detection for network intru-
sion detection. In Proceedings of the 2002 ACM Symposium on Applied Computing, SAC
’02, pages 201–208, New York, NY, USA, 2002. ACM.

[26] W. Kumari and D. McPherson. Remote Triggered Black Hole Filtering with Unicast
Reverse Path Forwarding (uRPF). RFC 5635 (Informational), Aug. 2009.

[27] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distribu-
tions. In Proc, SIGCOMM ’05, pages 217–228. ACM, 2005.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[29] S. Mehdi, J. Khalid, and S. Khayam. Revisiting traffic anomaly detection using software
defined networking. In R. Sommer, D. Balzarotti, and G. Maier, editors, Recent Advances
in Intrusion Detection, volume 6961, pages 161–180. Springer Berlin Heidelberg, 2011.

[30] J. Mirkovic and P. Reiher. A Taxonomy of DDoS Attack and DDoS Defense Mechanisms.
SIGCOMM Comput. Commun. Rev., 34(2):39–53, Apr. 2004.

www.necoma-project.eu 100 November 30, 2015

http://h17007.www1.hp.com/us/ en/networking/products/switches/HP_3500_and_3500_yl_Switch_ Series/index.aspx
http://h17007.www1.hp.com/us/ en/networking/products/switches/HP_3500_and_3500_yl_Switch_ Series/index.aspx
http://h17007.www1.hp.com/us/ en/networking/products/switches/HP_3500_and_3500_yl_Switch_ Series/index.aspx
http://h17007.www1.hp.com/us/en/networking/ products/switches/HP_3800_Switch_Series/index.aspx.
http://h17007.www1.hp.com/us/en/networking/ products/switches/HP_3800_Switch_Series/index.aspx.

BIBLIOGRAPHY

[31] D. Miyamoto, T. Iimura, G. Blanc, H. Tazaki, and Y. Kadobayashi. EyeBit: Eye-Tracking
Approach for Enforcing Phishing Prevention Habits. In Proceedings of the 3rd Inter-
national Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), Sep. 2014.

[32] NECOMA Consortium. Deliverable D2.1: Threat Analysis. Technical report, November
2014. (confidential).

[33] NECOMA Consortium. Deliverable D3.4: Countermeasure Application - Design. Tech-
nical report, November 2014. (confidential).

[34] NECOMA Project. Dns ddos defence and countermeasure. Available at: https://
github.com/upa/d4c, 2015.

[35] T. Peng, C. Leckie, and K. Ramamohanarao. Survey of Network-based Defense Mecha-
nisms Countering the DoS and DDoS Problems. ACM Comput. Surv., 39(1), Apr. 2007.

[36] Pica8. Data Sheet: Pica8 P-3290. http://www.pica8.com/documents/
pica8-datasheet-48x1gbe-p3290-p3295.pdf.

[37] L. Rizzo. netmap: A novel framework for fast packet i/o. In 21st USENIX Security
Symposium (USENIX Security 12), pages 101–112, Bellevue, WA, Aug. 2012. USENIX
Association.

[38] RSA Online Fraud Resource Center. The Current State of Cybercrime
2014. Available at: http://www.emc.com/collateral/white-paper/
rsa-cyber-crime-report-0414.pdf, 2014.

[39] K. Scarfone and P. Mell. Guide to Intrusion Detection and Prevention Systems (IDPS).
NIST SP800-94, 2007.

[40] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Soundcomber:
A Stealthy and Context-Aware Sound Trojan for Smartphones. In Proceedings of the
Network and Distributed System Security Symposium, Feb. 2011.

[41] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A. Camtepe, S. Albayrak,
and C. Yildizli. Smartphone malware evolution revisited: Android next target? In
Malicious and Unwanted Software (MALWARE), 2009 4th International Conference on,
pages 1–7, 2009.

[42] Y. Sekiya. Software technologies of composing iaas clouds –wide cloud as a case study–
. Computer Software, 29(2):2–15, 2012.

[43] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson. FRESCO:
Modular Composable Security Services for Software-Defined Networks. In Proc. of
NDSS, 2013.

[44] V. Svajcer. Sophos Mobile Security Threat Report. Available
at: http://www.sophos.com/en-us/medialibrary/PDFs/other/
sophos-mobile-security-threat-report.pdf, 2014.

[45] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thompson, S. Egelman, and
D. Wagner. The Effect of Developer-specified Explanations for Permission Requests on
Smartphone User Behavior. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 91–100, Apr. 2014.

[46] D. Turk. Configuring BGP to Block Denial-of-Service Attacks. RFC 3882 (Informa-
tional), Sep. 2004.

[47] Y. Ueno, K. Horiba, and K. Kataoka. Design and Implementation of Software LISP
Router. Internet Conference 2011 (IC2011) - Work in Progress, Oct 2011.

[48] J. Vincent, C. Porquet, M. Borsali, and H. Leboulanger. Privacy Protection for Smart-
phones: An Ontology-Based Firewall. In Information Security Theory and Practice.
Security and Privacy of Mobile Devices in Wireless Communication - 5th IFIP WG 11.2
International Workshop, WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011. Pro-
ceedings, pages 371–380, 2011.

www.necoma-project.eu 101 November 30, 2015

https://github.com/upa/d4c
https://github.com/upa/d4c
http://www.pica8.com/documents/ pica8-datasheet-48x1gbe-p3290-p3295.pdf
http://www.pica8.com/documents/ pica8-datasheet-48x1gbe-p3290-p3295.pdf
http://www.emc.com/collateral/white-paper/rsa-cyber-crime-report-0414.pdf
http://www.emc.com/collateral/white-paper/rsa-cyber-crime-report-0414.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-security-threat-report.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-security-threat-report.pdf

BIBLIOGRAPHY

[49] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang. Enabling security functions
with SDN: A feasibility study. Computer Networks, 85:19–35, 2015.

[50] S. T. Zargar, J. Joshi, and D. Tipper. A Survey of Defense Mechanisms Against Dis-
tributed Denial of Service (DDoS) Flooding Attacks. IEEE Communications Surveys and
Tutorials, 15(4):2046–2069, 2013.

www.necoma-project.eu 102 November 30, 2015

	Introduction
	Architecture
	Infrastructure-level Cyberdefense Mechanisms
	MPLS-based DDoS Mitigation
	Threat Description
	Proposal Overview
	Approach Using Load Balancing Routing
	Approach Using Policy-based Routing
	Reconfiguration Mechanism Implementation
	Experiments
	Results

	SDN-based Autonomic Cyberdefense
	Design Overview
	Enabling security functions by SDN
	ArOMA: Autonomic DDoS Mitigation Framework
	Implementation and Evaluation of ArOMA

	DDoS Mitigation and Defense on Internet eXchanges (IX) with SDN Technologies
	Threat Description
	Internet eXchange Points
	Design of SDN IX
	DDoS Defense on SDN IX
	Architecture
	Experiments

	LISP-based DDoS Mitigation
	Threat Description
	State of The Art
	Proposal
	Overview of LISP
	Two-stage Map Table Extension
	Advantages
	Experiment

	Threat Detection and Mitigation for Public Cloud
	Threat Description
	Proposal
	System Design
	Implementation
	Results

	Improving Cloud-based Intrusion Detection through High-Performance Virtualization
	Proposal
	Tools and Technologies
	Architecture and Results

	Endpoint-level Cyberdefense Mechanisms
	Improving Resilience through Personalization
	Threat description
	Overview of Resilient Defense for Phishing
	Implementation
	Preliminary Evaluation

	Smartphone User Protection
	Threat Description
	Tools and Technologies
	Architecture and results

	Offloading Smartphone Firewalling Using OpenFlow-capable APs
	Threat Description
	State of the Art
	Proposal Design
	Implementation

	Conclusion

