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Abstract—Darknets can be used to monitor unexpected net-
work traffic destined for allocated but unused IP address blocks,
thus providing an effective traffic measurement technique for
viewing certain remote network security events. Past works in this
field discussed the possible causes (events) of darknet traffic and
applied their classification schemes on short-range traces. Our
interest lies, however, in how darknets have evolved since those
works and the effectiveness of a darknet taxonomy for real long-
range traffic. We thus propose a simple but effective taxonomy
of darknet traffic, on the basis of observations, and evaluate
it on real darknet traces covering six years. The evaluation
results show that we can detect and label anomalous events
defined by the taxonomy for over 96% of all sources, making
the unlabeled source rate extremely low. We also obtain some
interesting findings on the evolution of different anomalous
events since 2006 (especially in recent years), determine the
most appropriate time bin for traffic analysis of our traces, and
highlight the general applicability of our taxonomy on different
darknet datasets. Finally, we conclude that most sources in our
traces are characterized by just one or two events with simple
attack mechanisms.

Index Terms—Traffic Analysis, Darknet, Taxonomy.

I. INTRODUCTION

Along with the rapid growth in Internet usage, network
security issues have become more difficult to deal with in
recent years. By providing an opportunity to view and detect
remote network security events, darknets [1] [2] (a.k.a., net-
work telescope [7]) have drawn much attention in the security
research community. A darknet consists of globally routable
but still unused IP blocks in which little or no legitimate traf-
fic exists. Continual monitoring of such addresses, however,
shows that unexpected packets keep arriving at darknets with
not low rates from a wide range of sources. These unwanted
packets are completely non-productive, since they originate
from worm propagation, (D)DoS attacks, Internet outages,
network misconfiguration, or other unsolicited events. Darknet
traffic can be used to track such security-related activities on
a global scale. An analysis of country-wide Internet outages
in Egypt and Libya in 2011 based on darknet traffic [3] serves
as a best example of this approach.

Past studies [1] [2] have showed the not minor volume of
darknet traffic and its great diversity both in terms of the
addresses being monitored as well as over time. They also
claimed that darknet traffic broadly comes from three types of
network events: scanning, backscatter, and misconfiguration.

An evaluation has been performed with their dataset, however,
this classification did not give clear definitions of events with
concrete traffic rules, and a further refinement was required
since it was simply based on TCP flags. As described in those
works, scanning is largely the result of infected hosts in the
Internet attempting to find other vulnerable targets; backscatter
most often results from (D)DoS attacks; and misconfiguration
generally results from software or hardware errors in network
devices.

Some works on one-way traffic analysis helped us better
understand darknet traffic considering its unidirectional nature.
The one-way traffic analysis tool iatmon [16] [18] classifies
traffic with two schemes: activity patterns of sessions, created
using finite state machine models of host-pair packet-level
behavior [17], and packet inter-arrival time (IAT) percentage
distributions of sources. The author has evaluated the tool with
a half-year trace in 2011. Finding recognizable IAT patterns,
however, takes much effort, and the efficiency of classifying
long-range darknet traces has not been examined yet.

To examine the evolution of darknet traffic within long-
range traffic and avoid the hard work of obtaining IAT patterns,
we need a simple but effective taxonomy of darknet traffic.
To the best of our knowledge, no such a simple taxonomy has
been developed within the research community. In this paper,
therefore, we propose a simple taxonomy of darknet traffic, on
the basis of observations, and then evaluate the taxonomy on
real darknet traces covering six years. Our taxonomy applies
concrete traffic rules on source flows generated from our
dataset to define five main types of anomalous events we
observed: scanning, one flow, backscatter, IP fragment, and
small events (see section III for detailed explanations). The
evaluation results demonstrate that we can detect and label
anomalous events defined by the taxonomy for over 96% of
all sources, suggesting an extremely low unlabeled source
rate. We obtain some interesting findings on the evolution of
different anomalous events since 2006 (especially in recent
years), helping to shed light on overall darknet trends. We
also determine the most appropriate time bin for our dataset
and highlight the general applicability of our taxonomy on
different darknet datasets. Finally, we conclude that most
sources in our traces are characterized by just one or two
events with simple attack mechanisms.

The rest of this paper is organized as follows. Section II
summarizes some related work on darknet traffic analysis.
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Section III introduces a simple but effective taxonomy of
darknet traffic with concrete traffic rules. Section IV describes
our experiment dataset and shows the evaluation results of our
proposal. Section V gives a further discussion of our findings.
At last section VI concludes the paper and lists future work.

II. RELATED WORK

Since monitoring darknet traffic provides a continual oppor-
tunity to view and detect remote network security events, many
efforts have been made to build darknet traffic monitoring
systems. Among them, three popular systems were proposed
in Refs. [7]–[9].

Another work [1] presented the first comprehensive analysis
of darknet traffic observed in 2004 at four unused IPv4
network blocks. It showed the great diversity of darknet traffic,
both temporally and spatially, and examined the dominant
events (i.e., root causes) on popular ports. Six years later,
another work attempted to discover how darknet traffic had
evolved from 2004 to 2010 [2]. It also introduced a simple
categorization of darknet traffic and evaluated it with real
traffic. Based on darknet traffic, an analysis of country-wide
Internet outages in Egypt and Libya in 2011 was presented
in Ref. [3]. In addition, a classification of one-way Internet
traffic collected in live networks expanded our understanding
of darknet traffic [10].

Many studies have been devoted to characterizing common
anomalous events in the Internet. The authors discussed a
taxonomy of DDoS attacks and different types of scanning
events in Ref. [6]. Ref. [4] provided a longitudinal examination
of scanning activities observed at Lawrence Berkeley National
Laboratory (LBNL) over 12.5 years. A past work [5] proposed
a backscatter analysis technique to infer DoS activity in
the Internet. A network activity classification scheme with
specification-based finite state machine models of TCP, UDP,
and ICMP traffic was introduced in Ref. [17]. By integrating
this classification scheme and packet IAT distributions of
sources, iatmon demonstrated its effectiveness in classifying
one-way traffic [16] [18]. More technical details of scanning
and backscatter events were covered in Refs. [11] [12].

III. A TAXONOMY OF DARKNET TRAFFIC

In this section we propose a simple taxonomy of darknet
traffic. Given that darknet traffic consists of non-productive
packets, it is natural to use concrete traffic rules to characterize
it in terms of a number of anomalous events. Table I sum-
marizes the anomalous events in our taxonomy. We base our
classification on source flows generated from darknet traffic
and explain each of these events in the following subsections.

A. Port scan

In a port scan, the attacker sends client request packets to
a number of server ports with the goal of finding an active
port and then exploiting known vulnerabilities of the service
corresponding to that port. Thus, we base our considerations
on (ipSrc, ipDst) pairs and raise a port scan event when the
number of distinct destination ports in a (ipSrc, ipDst) flow

exceeds a threshold N (#portDst ≥ N ). Note that attackers
can perform both TCP and UDP port scans. For TCP we also
require the proportion of packets with scan flags (SYN ∪ FIN
∪ FIN-ACK ∪ NULL; see Ref. [11] for more details) to be
larger than a threshold R% (ScanF lagPktRatio ≥ R%), in
order to ensure that attackers are most likely to attempt to find
active destination ports to exploit known vulnerabilities. More-
over, we specify two subcategories characterizing whether the
scan traffic is heavy or light, depending on the average number
of packets per destination port (Avg #Pkt per portDst).

B. Network scan

Unlike a port scan, a network scan attempts to find victims
with the same active port and either exploit known vulnera-
bilities of the service corresponding to that port or just recruit
peers for launching larger distributed attacks on as many hosts
as possible. We characterize a network scan event as a scan
aimed at the same target port (#portDst == 1) from a
single source (#ipSrc == 1) and involving several hosts
(#ipDst ≥ N ). Network scans can be performed with the
TCP, UDP, and ICMP protocols. As with a port scan, we also
require ScanF lagPktRatio ≥ R% for TCP. For ICMP, only
echo request (Ping) packets ((Type == 8) ∩ (Code == 0))
are considered in this case. For all three protocols we specify
two subcategories (depending on Avg #Pkt per ipDst) for
heavy and light attacks.

C. One flow

The notion of one flow characterizes large, repeated
traffic (#Pkt > N3) destined for one destination port
(#portDst == 1) in a (ipSrc, ipDst) flow. This happens
with both the TCP and UDP protocols. Network misconfigu-
ration is a plausible explanation for this kind of traffic.

D. Backscatter

Backscatter traffic [5] consists of response packets to
(D)DoS attacks carried out elsewhere in the Internet. Specifi-
cally, attackers somewhere in the Internet forge packets (most
often TCP-SYN packets) and send those packets to victims to
launch (D)DoS attacks while hiding themselves with spoofed
source IP addresses. For TCP, we use the TCP flags field
(SYN-ACK ∪ ACK ∪ RST ∪ RST-ACK; see more details in
Ref. [12]) to detect backscatter. For ICMP, we instead consider
echo reply ((Type == 0) ∩ (Code == 0)) and destination
unreachable (Type == 3) packets (see more details in
Ref. [13]). We then count the number of distinct sources
(#ipSrc == 1) that send at least one packet belonging to the
categories mentioned above as the number of backscatters.

E. IP fragment

IP fragmentation exploits in darknet traffic represent DoS
attacks or attempts to defeat packet filter policies. The Rose
Attack [15] is an example of exploiting the IP fragments
“Too Many Datagrams”, “Incomplete Datagram”, and “Frag-
ment Too Small”. We count the number of distinct sources
(#ipSrc == 1) that send at least one fragmented packet
(#fragmentPkt ≥ 1) as the number of IP fragment events.
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TABLE I
A TAXONOMY OF DARKNET TRAFFIC

Event Category Traffic rules

Port
scan

TCP
Heavy (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (ScanFlagPktRatio ≥ R%) ∩ (Avg #Pkt per portDst > M)

Light (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (ScanFlagPktRatio ≥ R%) ∩ (Avg #Pkt per portDst ≤M)

UDP
Heavy (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (Avg #Pkt per portDst > M)

Light (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst ≥ N) ∩ (Avg #Pkt per portDst ≤M)

Network
scan

TCP
Heavy (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (ScanFlagPktRatio ≥ R%) ∩ (Avg #Pkt per ipDst > M)

Light (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (ScanFlagPktRatio ≥ R%) ∩ (Avg #Pkt per ipDst ≤M)

UDP
Heavy (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (Avg #Pkt per ipDst > M)

Light (#ipSrc == 1) ∩ (#portDst == 1) ∩ (#ipDst ≥ N) ∩ (Avg #Pkt per ipDst ≤M)

ICMP
Heavy (#ipSrc == 1) ∩ (#ipDst ≥ N) ∩ ((Type, Code) == (8, 0)) ∩ (Avg #Pkt per ipDst > M)

Light (#ipSrc == 1) ∩ (#ipDst ≥ N) ∩ ((Type, Code) == (8, 0)) ∩ (Avg #Pkt per ipDst ≤M)

One
flow

TCP (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst == 1) ∩ (#Pkt > N3) ∩ (Protocol == TCP )

UDP (#ipSrc == 1) ∩ (#ipDst == 1) ∩ (#portDst == 1) ∩ (#Pkt > N3) ∩ (Protocol == UDP )

Backscatter
TCP (#ipSrc == 1) ∩ (#Pkt ≥ 1) ∩ (TCP Flags ∈ {SA ∪ A ∪ R ∪ RA})

ICMP (#ipSrc == 1) ∩ (#Pkt ≥ 1) ∩ (((Type, Code) == (0, 0)) ∪ (Type == 3))

IP
fragment (#ipSrc == 1) ∩ (#fragmentPkt ≥ 1)

Small
SYN (#ipSrc == 1) ∩ (#ipDst < N1) ∩ (#portDst < N2) ∩ (#Pkt ≤ N3) ∩ (TCP Flags == S)

Small
UDP (#ipSrc == 1) ∩ (#ipDst < N1) ∩ (#portDst < N2) ∩ (#Pkt ≤ N3) ∩ (Protocol == UDP )

Small
Ping (#ipSrc == 1) ∩ (#ipDst < N1) ∩ (#Pkt ≤ N3) ∩ ((Type, Code) == (8, 0))

Other Other

Remark: Our parameter setting {N = N1 = N2 = 5, R = 50,M = 3, N3 = 15} was empirically decided according to real traces.

F. Small SYN

In our real darknet traces, we notice that many sources
send a limited number of SYN packets to limited destinations
on limited destination ports within a time period, a situa-
tion that does not correspond to any of the above events.
We use the term “small SYN” to characterize this type of
event. Specifically, we count the number of distinct sources
(#ipSrc == 1) that send a small number of SYN packets
((#Pkt ≤ N3)∩ (TCP Flags == S)) to a few destinations
(#ipDst < N1) aimed at a small number of destination ports
(#portDst < N2) as the number of “small SYN” events.

G. Small UDP

For “small UDP”, the traffic rules are almost the same as
“small SYN” except that we consider UDP packets instead.

H. Small Ping
The “small ping’’ event is also similar to “small SYN”

except that all packets are ICMP echo requests (Pings). Thus,
we count the number of distinct sources (#ipSrc == 1)
that send a small number of ICMP echo requests ((#Pkt ≤
N3) ∩ ((Type, Code) == (8, 0))) to a few destinations
(#ipDst < N1) as the number of “Small Ping” events.

I. Other
Source IP addresses that are not labeled as any of the

network events mentioned above fall into this category. Note
that the calculation of the unlabeled source rate in our traces
is based on this category.

Note here that anomalous events – port scan, network
scan, and one flow – cover traffic of more than one protocol
originating from one source, while small events – small SYN,
small UDP, and small Ping – label one source according to
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certain specific packets. We emphasize that in our taxonomy
one event may overlap others (some packets can be part of
multiple events), but it will never include or be included in
other events, except for backscatters and IP fragments. These
exceptions are due to the simple traffic rules for backscatter
and IP fragment events: just one backscatter or IP fragmented
packet will trigger them. Moreover, our taxonomy allows one
source to be characterized by multiple anomalous events; for
example, one source send both TCP and ICMP scan packets.

IV. EVALUATION

In this section we first introduce our dataset and then present
analysis results for real darknet traces covering six years.

A. Dataset

Since Oct. 2006, we have been collecting traffic destined to
one /18 allocated but unused IPv4 darknet address block in
Japan, with three major data loss time periods: May 27, 2007
to Jun. 28, 2007; Nov. 26, 2010 to Feb. 4, 2011; and Jan.
9, 2012 to Sep. 25, 2012. Since we capture complete packet
headers (layers -2, -3, and -4) and only a few payload bytes,
our traffic analysis mainly relies on the header information.

To balance the scale of experimental data and corresponding
processing time, we select the first seven days’ data from every
month to experiment with. This data covers 74 weeks (518
days) from October 2006 to November 2013 (not counting
the excluded time periods). This long-range data is fairly
representative of darknet’s overall trends.

We also emphasize that our taxonomy is generally appli-
cable for other darknet datasets, except for the parameter
settings, which depend on specific traces.

B. Evaluation result overview

First, we compare our dataset with those used in Ref. [2] to
check the similarity of traffic behavior between them. Figure 1
plots time series of (a) the protocol breakdown based on the
number of packets and (b) the traffic breakdown defined by
the simple categorization introduced in Ref. [2]. A significant
change occurred around Oct. 2008 in both plots. Before the
change the TCP and UDP traffic were quite similar to each
other, but then the TCP traffic (especially TCP-SYN) kept
increasing until it accounted for over 70% of the packet
volume, thus dominating the complete traffic. As reported in
Ref. [2], this change was due to the Conficker worm outbreak
in Oct. 2008 [14]. In this regard, our dataset is consistent
with the prior ones. Furthermore, our results demonstrate the
Conficker worm’s great influence on darknet till Nov. 2013.

To detect anomalous events hidden by short time bins,
we adopted a longer time bin (24 hours, as explained in
subsection IV-C) in our experiment. We first extract daily
source IP flows from raw darknet traffic; then, for detection
and labeling, we apply the traffic rules for each anomalous
event defined in our taxonomy. We emphasize again that the
taxonomy allows multiple events for one source IP address.
Table II summarizes the results in terms of the percentages of
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Fig. 1. Time series plot of our dataset from 2006 to 2013, showing traffic
breakdown (a) by protocols and (b) by a simple categorization.

source IP addresses labeled as each type of event. The symbol
“-” in this table indicates a percentage of “<0.01%”.

Table II clearly demonstrates that throughout the traces
small SYN and small UDP events are most popular, with a
percentage of at least 10%. This indicates that more sources
are likely to send only a few packets destined for a small
number of hosts and destination ports within 24 hours. We
also notice, however, that the percentage of small SYN events
increased a lot in 2008, and then decreased from 69.99%
in 2009 to 41.46% in 2013, while the proportion of small
UDP events experienced a significant decrease from 2008
to 2009, and maintained a rate of less than 30%. Looking
at the proportion of light TCP network scans, we observe
a significant increase from 2008 to 2009. Considering that
the decrease in small SYN events and increase in light TCP
network scan events almost complement each other at the same
pace, we conclude that more and more attackers have preferred
to apply TCP network scans with light traffic since 2008. The
proportion of small Ping events, on the other hand, is much
lower than those for the other two small events. We confirm
that the main reason for these results is the Conficker worm’s
outbreak in 2008.

As for scanning events, so far they are not popular choices
among attackers, except for light TCP and ICMP network
scans. We also find that attackers generally prefer light scan-
ning to heavy scanning because light traffic is more likely
to evade detections by intrusion detection systems (IDS).
Although light UDP network scans show an overall trend
of decreasing, while light ICMP network scans have kept
increasing in recent years, together they cover less than 2% of
all sources in our traces.

Regarding backscatters, in the first three years ICMP
backscatter events covered more than 5% of source IP ad-
dresses and increased slowly from 0.01% in 2009 to 1.32%
in 2013. Compared to ICMP, TCP backscatter events in our
traces were relatively stable, ranging from 0.85% to 2.55%.
From the backscatter results we conclude that the observed
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TABLE II
EVALUATION RESULT OVERVIEW (SOURCE IP ADDRESS %)

Event & Category 2006 2007 2008 2009 2010 2011 2012 2013

Port scan
TCP Heavy - - 0.03 - 0.01 - - 0.02

Light 0.01 - 0.03 - - - - -

UDP Heavy - - 0.03 - 0.04 0.02 0.01 0.01
Light - 0.01 0.01 - 0.02 0.01 0.01 0.01

Network scan

TCP Heavy 0.05 0.03 0.06 0.03 0.03 0.04 0.06 0.19
Light 0.61 0.39 4.00 17.39 20.70 21.98 21.37 22.14

UDP Heavy - 0.29 0.01 - - - 0.01 0.01
Light 1.35 0.87 1.25 0.06 0.04 0.07 0.06 0.07

ICMP Heavy - - 0.01 - - - - -
Light 0.14 0.06 0.14 0.01 0.07 0.56 0.63 0.94

One flow TCP 2.04 1.42 2.58 0.22 0.30 0.20 0.66 0.72
UDP 1.54 3.23 5.83 0.17 0.57 0.28 0.28 0.32

Backscatter TCP 1.86 2.39 2.55 0.85 1.01 0.86 1.04 1.16
ICMP 10.93 15.47 5.03 0.01 0.03 0.04 0.76 1.32

IP fragment 0.05 0.02 0.01 - - - 0.01 0.01
Small SYN 42.30 18.53 34.47 69.99 67.38 61.20 54.63 41.46
Small UDP 36.32 54.28 39.50 12.85 10.75 14.23 18.40 27.87
Small Ping 5.32 1.82 3.85 0.18 0.25 1.42 1.64 2.55

Other 0.60 3.09 2.49 0.15 0.34 0.26 1.34 2.34

spoofed-source (D)DoS attacks from our darknet keep rela-
tively inactive in recent years.

As discussed in subsection III-C, one flow events mainly
result from network misconfiguration. The highest proportions
for both TCP and UDP one flow events appeared in 2008,
and both exhibit an overall trend of decreasing since then. By
examining the raw packets belonging to one flow events, we
find that both single and multiple source ports are possible.

Regarding port usage in port scans, we find that over six
years the most popular ports exploited by TCP scanners were
80 (HTTP) and 8080 (HTTP Alternate) while the most popular
port for UDP was 28237 (application unknown). Turning to
network scan events, we observe that 445 (Microsoft-DS)
dominates TCP while 1434 (MS-SQL Monitor) dominates
UDP. We also notice that port 53 (DNS) has been popular
for UDP network scans in recent years. As expected, port 80
dominates among TCP backscatter source ports, suggesting
(D)DoS attacks to web servers. Port 2186 (Guy-Tek Auto-
mated Update Application) is the most popular for TCP one
flow events, while ports 137 (NetBIOS) and 161 (SNMP)
dominate for UDP.

Throughout the six years of data, the proportion of IP
fragmentation exploits is almost negligible. Last but not least,
we point out that other events maintained a low proportion
(the highest is 3.09% in 2007), validating that the proposed
taxonomy detects and labels most sources in darknet traffic.

C. Dependency on time bin size

Determining the typical time period for anomalous events
in a darknet is crucial to their accurate detection. On the one
hand, if we choose a detection bin shorter than the typical time
period, for example, some scanning events would likely be
miscategorized as small SYN events or just be neglected. On
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Fig. 2. Dependency on time bin size in terms of anomalous event proportions
in (a) 2007 and (b) 2013.

the other hand, a longer bin could lead to redundant packets
mixing into specific anomalous events, as well as requiring
longer processing time. Thus, to understand this key parameter,
we set the time bin to different sizes and experimented on six-
day traces in 2007 and 2013.

Figures 2(a) and 2(b) plot the results for dependency on
time bin size in terms of labeled source proportions before
and after the Conficker worm’s outbreak in 2008. In Fig. 2(a),
small UDP events first decrease then increase a bit while small
SYN keeps decreasing as time bin gets longer. However, we
observe that small SYN events decrease rapidly from one-
hour to six-hour time bin whereas light TCP network scan and
small UDP events increase much meanwhile. We also notice
that with a time bin between six hours and one day both plots
show just small fluctuations.
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The resuts show that the lower percentage of small SYN
events with a time bin between six hours and one day also
means a higher detection rate for other types of events, like
light TCP network scans. Thus, we conclude that the best
time bin for detecting more significant anomalous events in
our dataset is between six hours and one day. In fact, for this
work we selected one day as the time bin for evaluation.

D. Dependency on darknet space size

To understand how taxonomy parameters influence detec-
tion accuracy for darknets with different space sizes, we divide
short-range traces into several subnets with different sizes, and
then apply our taxonomy on those subnets with the same
parameters we used for /18 block before. The results are
plotted in Fig. 3.
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Fig. 3. Dependency on darknet space size in terms of anomalous event
proportions in (a) 2007 and (b) 2013.

From Fig. 3(a) we see clearly that our empirical parameters
mainly influence small SYN and small UDP events to show
fluctuations for darkents with different space sizes before the
Conficker worm outbreak. However, Fig. 3(b) shows that small
UDP and light TCP network scan events keep decreasing
whereas the vast majority of traffic can be characterized as
small SYN events with the old parameters for /18 block used
as darknet get smaller after the Conficker worm outbreak. This
result highlights that our taxonomy is generally applicable
to different darknet datasets, though the parameter tuning is
required for accurate detection.

E. Diversity of anomalous events per source

Of particular interest to us is whether sources in darknet
typically exhibit simple or complicated attack mechanisms. To
obtain clues to this issue, we summarize the overall propor-
tions of sources with different numbers of labels since 2006 in
Tab. III. From the table we clearly see that sources with one or
two labels are the vast majority, together accounting for over
96% of all sources. The extremely high percentage of sources
with only one label (97.83%) also highlights that most sources
are characterized by one simple event. Digging deeper, we

find that labels “small SYN”, “light TCP network scan”, and
“small UDP” together account for over 95% of the sources
with one label, while label combinations “small SYN, small
UDP” and “small SYN, TCP backscatter” dominate among
the sources with two labels. These dominant labels and label
combinations are quite simple, and do not require deploying
complicated mechanisms like those described in Ref. [11].

The results also indicate very few sources with more than
two labels. One example of a four-label combination is “small
SYN, small UDP, small Ping, TCP backscatter”, which is
allowed by our taxonomy.

V. DISCUSSION

From Tabs. II and III, we conclude that most sources in
our traces send a small number of TCP-SYN or UDP packets
destined for small numbers of hosts and ports. We also notice
the relative low proportion of one flow events over six years.
These two findings suggest that most source IP addresses
prefer neither large campaigns nor one-flow attacks. Moreover,
the relative stability since 2008 of most of the anomalous
events listed in Tab. II proves the persistent influence of the
Conficker worm.

We also notice that in our traces over 97% of the sources
are characterized by just one simple event and about 1.40%
of the sources are labeled by a simple combination of two
events, indicating that simple attack mechanisms are most
often deployed by the sources in our traces.

Our result for dependency on time bin size shows that
a time bin between six hours and one day is the most
appropriate for accurate detection of anomalous events in our
traces. Furthermore, the dependency on a longer bin suggests
that the scanning activities in our traces are more likely
to carry out slower probing, in attempting to more easily
evade detection. Also, the result for dependency on darknet
space size suggests us an importance of appropriate parameter
settings corresponding to observed address blocks, especially
for light TCP network scan events. The detailed analysis and
further improvement will be one of our future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a simple but effective tax-
onomy of darknet traffic and analyzed 74 weeks of real traces
to evaluate our proposal. The results showed an extremely high
detecting and labeling rate, of over 96% of all sources.

Through examining the evolution of anomalous events since
2006 (especially in recent years), we obtained some interesting
findings. We highlighted that small SYN and small UDP events
have dominated throughout the six years, while light TCP
network scans have become more active in recent years. We
also confirmed that the Conficker worm maintained its great
influence on darknet traffic as of this work. In addition, we
concluded that the observed spoofed-source (D)DoS attacks
from our dataset and network misconfiguration events have
kept relatively inactive in recent years.

We determined that the most appropriate time bin for the
analysis of our dataset is between six hours and one day. Also,
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TABLE III
OVERALL PROPORTIONS OF SOURCES WITH DIFFERENT NUMBERS OF LABELS SINCE 2006 (%)

#Labels 0 1 2 3 4 ≥5
Percentage 0.70 97.83 1.40 0.05 0.01 <0.01

we investigated the dependency on darknet space size and
highlighted the need for parameter tuning for different darknet
datasets. Furthermore, we emphasized that most sources are
characterized by one or two events, and they most often deploy
simple attack mechanisms.

In future work, we plan to find a reasonable parameter
tuning approach for darknets of different space sizes, and
improve our current taxonomy to make it more fine-grained.
In addition, we also plan to conduct a quantitative compar-
ison with existing approaches (e.g., iatmon) to examine the
advantages and disadvantages of our taxonomy.
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