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1
Frontmatter

1.1 Preface

The BADGERS workshop is intended to encourage the development of large
scale security-related data collection and analysis initiatives. It provides an
environment to describe already existing real-world, large-scale datasets,
and to share with the systems community the return on experiences ac-
quired by analyzing such collected data. Furthermore, novel approaches
to collect and study such data sets are presented at the third edition of this
workshop. By giving visibility to existing solutions, we expect that the work-
shop will promote and encourage the better sharing of data and knowledge.

We are happy to report that the third BADGERS workshop received many
interesting submissions, spanning three continents, and many aspects of
data collection and analysis initiatives. In the end, the program commit-
tee accepted 8 papers (including three short papers) out of 16 submissions
(50%) for publication and all of the papers received at least three reviews
from our program committee. This workshop would never have taken place
without the truly excellent program committee and external reviewers and
we are grateful for all the hard work they put in.

The resulting program was quite interesting and resulted in lively dis-
cussions. In summary, the accepted papers address topics that range from
testbeds that can be used to study current attacks, to large scale data collec-
tion systems and sharing. All very different papers and presentations, but
all focussing on the problem of data collection and analysis initiatives. They
were selected for their novelty, and their potential for interesting debate.

Wrocław, 11 September 2014

Mihai Christodorescu and Sotiris Ioannidis
Program Co-Chairs BADGERS 2014
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appear in the actual proceedings.
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Abstract—Android is the most popular smartphone operating
system with a market share of 80%, but as a consequence,
also the platform most targeted by malware. To deal with
the increasing number of malicious Android apps in the wild,
malware analysts typically rely on analysis tools to extract
characteristic information about an app in an automated fashion.
While the importance of such tools has been addressed by the
research community, the resulting prototypes remain limited in
terms of analysis capabilities and availability.

In this paper we present ANDRUBIS, a fully automated,
publicly available and comprehensive analysis system for
Android apps. ANDRUBIS combines static analysis with dynamic
analysis on both Dalvik VM and system level, as well as
several stimulation techniques to increase code coverage. With
ANDRUBIS, we collected a dataset of over 1,000,000 Android apps,
including 40% malicious apps. This dataset allows us to discuss
trends in malware behavior observed from apps dating back as
far as 2010, as well as to present insights gained from operating
ANDRUBIS as a publicly available service for the past two years.

I. INTRODUCTION
Android is undoubtedly the most popular operating system for
smartphones and tablets with a market share of almost 80% [1].
Its widespread distribution and wealth of application (app)
distribution channels besides the official Google Play Store,
however, also make it the undisputed market leader when it
comes to mobile malware: according to a recent estimate, as
many as 97% of mobile malware families target Android [2].
Estimations by anti-virus (AV) vendors as to the number of
Android malware in the wild vary widely. McAfee reports
about 68,000 distinct malicious Android apps [3] and Sophos
collected a total of 650,000 unique Android malware samples to
date, with 2,000 new samples being discovered every day [4].

Google reacted to the growing interest of miscreants in
Android by introducing Bouncer [5], a service that transparently
checks applications submitted to the Google Play Store for
malware. Google reported that this service led to a decrease
of the share of malware in the Play Store by nearly 40% since
its deployment in February 2012. However, a common practice
among malware authors is repackaging popular apps with
malicious code and publishing them in alternative app markets
that do not employ effective security measures. In fact, in line
with findings from F-Secure [2], we found alternative markets
hosting up to 5-8% malicious apps [6].

Consequently, a significant amount of research has focused on
analyzing and detecting Android malware, with numerous tools
and services being proposed and operated by researchers [7]–
[11] and security companies [12]–[14]. Automated and reliable
solutions are required to deal with the growing number of
mobile malware samples. Analysis capabilities and availability
of proposed research prototypes, however, remain limited.
A recent study on state-of-the-art Android malware analysis
techniques showed that among the 18 analysis tools surveyed,

many systems were not available online or were no longer
being maintained [15]. In an evaluation on the susceptibility of
Android dynamic analysis sandboxes against evasion, Vidas et
al. [16] only found three publicly accessibly systems (including
the one presented in this paper).

In order to provide a large-scale analysis solution to the
research community we propose ANDRUBIS, a hybrid Android
malware analysis sandbox that generates detailed analysis
reports of unknown Android apps based on features extracted
during static analysis and behavior observed through dynamic
analysis during runtime. Similar to the spirit of AndroTotal [17],
a service that allows researchers to scan Android apps with a
number of AV scanners, we operate ANDRUBIS as a publicly
available service and data collection tool that allows us to
collect and share a comprehensive and diverse dataset of both
Android malware and benign apps.

We built ANDRUBIS as an extension to the dynamic Windows
malware analysis sandbox ANUBIS [18,19]. ANUBIS has
collected a dataset of Windows malware samples that represent
a comprehensive and diverse mix of malware found in the wild
since 2007 [20]. ANDRUBIS itself has been online since June
2012 and has analyzed over 1,000,000 unique Android apps
so far. Based on AV labels collected from VirusTotal [21], we
estimate 40% of those apps are malware (not including adware).
We further assess the age of apps in our dataset and categorize
them by year starting in 2010 allowing us to identify trends in
Android malware behavior. Similar to the dataset of ANUBIS,
our dataset represents apps from a variety of sources, with apps
collected from crawls of the Google Play Store and alternative
markets, sample exchange with other researchers, torrents and
direct downloads, and anonymous user submissions.

The tight integration of our analysis with the existing ANUBIS
infrastructure for analyzing Windows malware provides two main
benefits: (a) we can take advantage of existing sample exchange
agreements as malware feeds often contain both Windows and
mobile samples, and (b) adapt existing analysis techniques for
the use with Android apps. For example, experiments applying
clustering [22] to Android apps yielded promising results and
showed that the feature set produced by ANDRUBIS is rich
enough to allow researchers to build various post-processing
methods upon [23]. This last aspect is of particular importance as
we envision ANDRUBIS to be integrated with other analysis tools
to foster sample exchange and provide deeper insights into An-
droid malware behavior. ANDRUBIS has already been integrated
with different tools, such as AndroTotal to provide an additional
analysis report to AV scanner results. Similarly, ANDRUBIS
provides a seed of malicious apps to AndRadar [6], which it
uses to scan the Google Play Store and 15 alternative markets and
that in turn allows us to collect valuable meta information for our
dataset. Besides shedding light on publishing habits of malicious
app authors we can gain insights on an app’s distribution across
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markets and popularity according to user ratings and download
numbers. In the future, we also hope to gain insights into the
infection rates of user’s devices by analyzing which apps are
submitted through our mobile app interface from user’s phones.
Thereby we could verify reports of the small infection rates of
less than 0.3% reported in related work [24]–[26].
In summary, we make the following contributions:
• We introduce ANDRUBIS, a fully automated analysis system

that combines static and multi-layered dynamic approaches
to analyze unknown Android apps.

• We provide ANDRUBIS as a large-scale analysis service to the
research community, accepting public submissions at https:
//anubis.iseclab.org and through a mobile app [27].
• By collecting apps from a variety of sources we build a

comprehensive and diverse dataset of over 1,000,000 Android
apps, including over 400,000 malicious apps.

• We present insights gained from providing our service for the
past two years and we discuss trends in malware behavior
observed from apps dating back as far as 2010.

II. ANDRUBIS SYSTEM OVERVIEW
In this section we detail the building blocks of ANDRUBIS and
how they contribute to forming a complete picture of an app’s
characteristics. ANDRUBIS follows the hybrid analysis approach
and is based on both static and dynamic analysis complementing
and guiding each other: results of the static analysis are used
to perform more efficient dynamic analysis. Figure 1 shows
an overview of the individual components of ANDRUBIS and
how they relate to one another. Users can submit apps either
through our web interface, automated batch submission scripts,
or directly from their phone through a dedicated mobile app.
We then subject each app to the following three analysis stages:

1) Static Analysis. During this stage we extract information
from an app’s manifest and its bytecode.

2) Dynamic Analysis. This core stage executes the app in a
complete Android environment, and its actions are monitored
at both the Dalvik and the system level.

3) Auxiliary Analysis. We capture the network traffic from
outside the Android OS and perform a detailed network
protocol analysis during post-processing.

A. STATIC ANALYSIS
Android apps are packaged in Android Application Package
(APK) files, a ZIP archive based on the JAR file format. An
APK file contains an app’s bytecode stored in Dalvik Executable
(DEX) format, resources, such as UI layouts, as well a manifest
file (AndroidManifest.xml). The manifest is mandatory and
without its information an app cannot be installed or executed.
Thus, as a first step, we unpack the archive and parse meta
information from the manifest, such as requested permissions,
services, broadcast receivers, activities, package name, and
SDK version. In addition we examine the actual bytecode to
extract a complete list of available Java objects and methods.

We use the information gathered during static analysis to assist
in automating the dynamic analysis, mainly during the stimu-
lation of an app’s components. Furthermore, an app requesting
dangerous permissions can be indicative of malicious behavior.
Therefore, we extract the permissions that are requested as well
as the permissions that are actually used in the app’s bytecode
to later compare them to permissions used during runtime.

B. DYNAMIC ANALYSIS
Being designed for smartphones and tablets, Android is predom-
inantly deployed on ARM-based devices. Since the underlying
architecture should be of no difference to the apps, we decided to

APK File
Dynamic Analysis

Emulator
Android OS
Dalvik VM

Analysis Report

Static Analysis

Auxiliary
Analysis

Network 
Protocols …

Fig. 1: System overview of ANDRUBIS.

build our sandbox for the ARM platform, the typical environment
for Android, and chose a QEMU-based emulation environment
capable of running arbitrary Android OS versions. Since Android
apps are based on Java, we instrument the underlying virtual
machine (VM), called the Dalvik VM, and record activities
happening within this environment. This allows us to monitor
the file system and network, as well as phone events, such as
outgoing SMS messages and phone calls, and the loading of addi-
tional DEX or native code during runtime. For a comprehensive
analysis, however, these capabilities are not sufficient. Therefore,
we implemented the following additional analysis facilities:
• Stimulation. Due to the event-driven nature of Android,

comprehensive input stimulation is invaluable for triggering
interesting behavior from the app under analysis.

• Taint Tracking. To track privacy sensitive information
ANDRUBIS uses taint tracking at the Dalvik level [28], which
enables us to detect the leakage of sensitive information.

• Method Tracing. We record invoked Java methods, their
parameters, and their return values. Combined with our
static analysis, we can use method traces to measure the
code covered during an analysis run, e.g., for evaluating and
improving our stimulation engine.

• System-Level Analysis. To provide means for analysis
beyond the scope of the Dalvik VM, we implemented an
introspection-based solution at the emulator level. This
enables us to monitor the system from outside the Android OS
and to track system calls of native libraries and root exploits.

The output produced by the method tracer and the system-level
analysis is not displayed in the public ANDRUBIS analysis
report. As these tasks are quite resource-intensive and the
log files are quite large, we only perform them on a subset
of samples and provide them on an on-demand basis for
researchers and analysts rather than ordinary users.

The remainder of the sandboxing system (network setup and
traffic capturing, host environment, database, etc.) is comparable
to conservative analysis systems. To mitigate potentially harmful
effects of our analysis environment to the outside world while
allowing apps under analysis to use the network, we took
precautions to prevent apps from executing DoS attacks, sending
spam e-mails or propagating themselves over the network. This
part is based on our experience with Windows malware analysis
and proved to be effective with ANUBIS in the past [19].

1) Stimulation: The purpose of stimulation is to exhaustively
explore the functionality of an app. One major drawback of
dynamic analysis in general is the fact that only a few of all
possible execution paths are traversed within one analysis run.
Furthermore, Android apps can have multiple entry points
besides the main activity, which is displayed to the user when
an app is launched, so that apps can react to system events or
interact with each other. Luckily, since the app’s manifest lists the
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various components (activities, services, and broadcast receivers),
we can stimulate them individually. Additionally, we can initiate
common events that malicious apps are likely to react to.

Our stimulation approach includes the following sequence of
events: after the initialization of the emulator, ANDRUBIS installs
the app under analysis and starts the main activity. At this point,
all predefined entry points are known from static analysis. During
runtime ANDRUBIS keeps track of dynamically registered entry
points, enabling it to perform the following stimulation events:
Activities. An activity provides a screen to interact with and
defines the interaction sequences and UI layout presented to the
user. Activities have to be registered in the manifest and cannot
be added programmatically. Therefore, by parsing the manifest,
ANDRUBIS has full knowledge about an app’s activities and
invokes each activity separately, effectively iterating all existing
dialogs within an app.
Services. Background processes on the Android platform are
usually implemented as services. In contrast to activities, they
come without a graphical component and are designed to provide
background functionality for an app. Naturally, they are also of
interest to malware authors, as they can be used to implement
communication with command and control (C&C) infrastructures
of botnets, leak personal information, or forward intercepted text
messages to an adversary. Again, all services used by an app
must be listed in the manifest. Their existence, however, does
not automatically mean the service is started: to save battery life
and preserve memory, services have to be started on demand,
with a lifetime defined by the programmer. For ANDRUBIS we
utilize a customized Activity Manager to iterate and start all
listed services of an app automatically after it has been installed.
Broadcast Receivers. Other possible entry points for Android
apps are broadcast receivers. Broadcast receivers are basically
event handlers used to receive events from the system or
other apps on the Android platform. For example, a broadcast
receiver for the BOOT_COMPLETED event can be registered to
start an app after the phone has finished its boot sequence
or a broadcast receiver for the SMS_RECEIVED event can be
registered to intercept incoming SMS messages.

Just like services and activities, broadcast receivers can be
registered in the manifest. However, for broadcast receivers
this is not mandatory. In order to provide the possibility to
react to certain events, or to provide communication with
other apps dynamically, they can also be registered and
deregistered at runtime. Therefore, we intercept the calls
to registerReceiver() to obtain a list of dynamically
registered event handlers that we can stimulate. Similar to the
previous stimuli, ANDRUBIS uses the Activity Manager to invoke
all statically registered broadcast receivers found in the manifest
as well as the ones that have been dynamically registered.
Common Events. A far superior method compared to directly
stimulating broadcast receivers with a targeted event is to
emulate the events that apps might react to and especially
malicious apps are likely to be interested in. Thus, we broadcast
events such as boot completion, incoming SMS and phone
calls, changes in the GPS lock, and changes in the WiFi and
cellular connectivity. In contrast to directed stimuli, these events
occur at the system level and thus also trigger receivers of the
Android OS itself. That, in turn, avoids causing inconsistent
states the OS would have to recover from when only invoking
the event handler registered by an app.
Application Exerciser Monkey. The remaining elements
that need to be stimulated are actions based on user input
(button clicks, file upload, text input, etc.). For this purpose,
we use the Application Exerciser Monkey, which is part of the

Android SDK and generates semi-random user input. Originally
designed for stress-testing Android apps, it randomly creates a
stream of user interaction sequences that can be restricted to a
single package name. While the triggered interaction sequences
include any number of clicks, touches, and gestures, the monkey
specifically tries to hit buttons. As some use cases might
require repeatable analysis runs without any random behavior
introduced by the monkey, we optionally provide a fixed seed
in order to always trigger the same interaction sequences.

2) Taint Tracking: Data tainting is a double-edged sword
when it comes to malware analysis. On one hand, it is the
perfect tool to keep track of interesting data; on the other hand,
it can be tricked quite easily if a malware author is aware of
this mechanism within an analysis environment [29]. By leaking
data through implicit flows, for instance, it would be possible to
circumvent tainting. Furthermore, enabling data tainting always
comes at the price of additional overhead to produce and
track taint labels. Still, the possibility to track explicit flows of
sensitive data sources, such as contacts, phone-specific identifiers,
and the location, to the network is a valuable property of a
dynamic analysis system. ANDRUBIS leverages TaintDroid [28]
to track such sensitive information across application borders in
the Android system. The introduced overhead in processing time
of approximately 15% [28] is also acceptable for our purposes.
As a result, ANDRUBIS can log tainted information as it leaves
the system through three sinks: network, SMS, and files on disk.

3) Method Tracing: For an extensive analysis of Java-based
operations, we extended the existing Dalvik VM profiler
capabilities to incorporate a detailed method tracer. For a
given app we log the executed Java methods on a per-thread
basis. The method trace contains method names and their
corresponding classes, the object’s this value (if any), all
provided parameters and their types, return values, constructors,
exceptions and the current call depth. For non-primitive types,
the tracer looks up and executes the object’s toString()
method, which is then used to represent the object.

Together with the output gained from system-level analysis
(described in the next section), the fine-grained method traces
can assist reverse engineering efforts, serve as input to machine
learning algorithms, or they can be used to create behavioral
signatures. Furthermore, by mapping the method trace to
permissions utilizing a permission mapping, such as the ones
provided by PScout [30] or Stowaway [31] we can determine
the permissions an app actually used during runtime.

Our main incentive to integrate method tracing, however, is
to measure the code covered during the individual phases of the
stimulation engine. To this end, we first compile a list of executed
method signatures. We then map this list against the list of func-
tions extracted during static analysis based on their Java method
signature excluding parameter types and modifiers, i.e., on
their <package>.<subpackage>.<class>.<method> rep-
resentation. Finally, we compute the code covered as the overall
percentage of functions that were called during the dynamic anal-
ysis. However, apps may contain numerous functions that, during
a normal execution, will never be invoked, such as localization
and in-app settings or large portions of unused code from third-
party libraries. Thus, for a less conservative and more realistic
code coverage computation we can whitelist known third-party
APIs or limit the computation to the main app package’s code.

4) System-Level Analysis: In addition to monitoring the
Dalvik VM, and in contrast to most related work on Android
malware, ANDRUBIS also tracks native code execution. By
default, Android apps are Java programs, being distributed
as a DEX file within an APK file. Hence, the default way of
programming for the Android platform and executing Android
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apps is by running Dalvik bytecode within the Dalvik VM.
However, Android apps are not limited to Dalvik bytecode and
can also execute system-level code by loading native libraries
via the Java Native Interface (JNI). While this functionality
is mainly intended for performance-critical use cases, such as
displaying 3D graphics, apps are not restricted to loading the
native libraries shipped with the Android OS; instead they can
also ship and load their own native libraries and, in turn, execute
arbitrary system-level code. Naturally, the execution of this code
takes place outside of the Dalvik VM and, thus, the behavior
of this code is invisible to the analysis at Dalvik VM level.
For malicious apps the use of native code is attractive as the
possibilities to perform malicious activities, such as the usage
of exploits to gain root privileges, are far greater than within the
Dalvik VM – making system-level analysis indispensable for
drawing a complete picture of an apps’s behavior. In addition,
Google recently introduced the new Android Runtime (ART) [32]
that compiles Dalvik bytecode to native code at installation
time. With the replacement of Dalvik with ART as the default
runtime in upcoming Android OS releases [33], the capability
to perform system-level analysis will gain further importance.

Being based on Linux, there are a couple of ways to
implement system-level instrumentation in Android, such as
using LD_PRELOAD, ptrace or a loadable kernel module. We
decided to use the most transparent and non-intrusive way –
virtual machine introspection (VMI). With VMI our analysis
code is placed outside of the scope of the running Android OS,
right in the emulator’s codebase, and tracks the complete list of
system calls performed by the emulator as a whole, including
the OS. To capture the system-level behavior of the app under
analysis, we ultimately need to extract the system calls executed
by the library code that was loaded via JNI. To this end, we
intercept the Android dynamic linker’s actions in order to track
shared object function invocations. System call tracking bundled
with this information enables us to associate system calls with
invocations of certain functions of loaded libraries. Android
assigns a unique user ID (UID) to every app and runs the app as
that user in a separate process – allowing us to associate system
calls with apps based on the process UID. The result is a list of
native code events caused by just the specific app under analysis.

C. AUXILIARY ANALYSIS
Network traffic is one of the most essential parts
when establishing malware-detection metrics, with C&C
communication being of particular importance. According
to studies performed in production environments [34], more
than 98% of Windows malware samples established a TCP/IP
connection. Thus, in addition to tracking sensitive information to
network sinks via taint tracking, we also capture all the network
activity during analysis regardless of the performed action or the
app causing it. This is necessary since apps not requesting and
using the INTERNET permission themselves, can still use other
installed apps like the browser, to send data over the network.
Another way to transmit network data without requesting the
appropriate permissions is by exploiting the Android OS and
circumventing the permission system as a whole.

During post-processing we perform a detailed Network
Protocol Analysis that extracts high-level network protocol
features from the captured network traffic suitable for identifying
interesting samples. Currently, we focus on the well-known and
often used protocols DNS, HTTP, FTP, SMTP, and IRC.

III. ANDRUBIS AS A SERVICE
In this section we present insights gained from offering
ANDRUBIS as a publicly available service for the past two
years and the dataset of apps we collected along the way.

A. SUBMISSION STATISTICS
We base our analysis on a dataset collected over the span
of exactly two years, between June 12, 2012 and June 12,
2014. We distinguish between submissions (all analysis requests
ANDRUBIS received), tasks (submissions for which the analysis
was performed), and samples (unique apps based on their MD5
file hash). Overall, ANDRUBIS received 1,778,997 unique submis-
sions. Since ANDRUBIS usually returns cached analysis reports
in case an app is submitted multiple times (unless a user requests
a re-analysis of a previous task), it performed analysis tasks
for 1,073,078 (around 60%) of submissions. In total ANDRUBIS
received and analyzed 1,034,999 (58.18%) unique samples.

To put the number of Android samples into perspective
we compare them to overall submissions to ANUBIS. During
our observation period ANUBIS received a total of over 22
million samples, Android apps thus amount to close to 5% of
overall samples. However, since the submission interface only
assigns submissions of ZIP archives containing classes.dex
and AndroidManifest.xml to ANDRUBIS, we only report
numbers on APK files and not submissions of related files such as
stand-alone DEX classes. A large number of samples comes from
malware feeds as part of exchange agreements. We receive feeds
with Android apps from nine sources, most of them submitting
both Windows executables and Android apps – with the exception
of AndroTotal almost exclusively submitting APK files. Other
malware feeds from security researchers and AV vendors contain
from as little as 1% to up to 37% Android apps. The largest
sample feed contributing more than five million samples in the
observation period contains around 10% Android submissions.

Figure 2 shows the weekly number of total submissions,
submissions through sample exchanges, i.e., semi-regular feeds
of samples, new samples and analyzed samples. Submissions
peaked in August 2012 and January 2013, when we received
bulk submissions from Google Play crawls and in July 2013
when one feed submitted a higher than usual amount of
samples. In November and December 2013 AndRadar [6]
started submitting a backlog of apps before switching to a
regular feed of apps. Besides a power outage in January 2014
ANDRUBIS has been operating reliably and analyzed up to the
current maximum capacity of 3,500 new apps per day.

In order to estimate the number of different users using our
service, we distinguish them either by their username, or in case
of anonymous submissions, by their IP address. Users can register
for an account in order to gain special privileges, such as a higher
priority for their tasks or the ability to force the re-analysis of
an app. The account management is shared with ANUBIS, but
152 registered users submitted at least one Android app. With
anonymous submissions coming from 8,123 unique IP addresses
we estimate that 8,275 unique users from 130 different countries
are using ANDRUBIS. The majority of submissions come from
registered users, with 15 individual users amounting to over 95%
of total submissions, and only 38,905 (3.76%) of submissions
coming from anonymous sources. Table I categorizes users by
their number of submissions from single submitters with less
than 10 submission to “power users” with more than 10,000
submissions. The maximum amount of 557,559 submissions for a
single user stems from one of the aforementioned malware feeds.

Figure 3 shows the number of different sources, i.e., the
number of distinct users that submitted a particular app: around
70% of apps were submitted by only one user and only 1.5%
of apps were submitted by more than three distinct users. In
general, malicious samples were submitted more frequently than
goodware apps (with the exception of the top two apps): over
80% of apps submitted by more than five different users belong
to the malware category. The popular game Flappy Bird was also
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Fig. 2: Weekly number of total submissions, submissions through sample exchanges, new and analyzed samples.

TABLE I: Users categorized by their number of submissions
and proportion of all submissions.

Category # of Users % of All Submissions

Bulk (10,000+) 15 95.82%
Large (1,000-10,000) 13 2.47%
Medium (100-1,000) 34 0.59%
Small (10-100) 247 0.41%
Single (1-10) 7,966 0.72%

Fig. 3: Number of unique users submitting an app and
percentage of goodware and malware submitted by N users.

the “most popular” app submitted to ANDRUBIS by 88 different
users. The second most submitted app is the alpha version
of our mobile interface to ANDRUBIS, with which users can
submit apps directly from their phones (it is currently available
for download on the ANDRUBIS’s web interface). However,
the remaining most popular apps (and all other apps submitted
26 times and more) are part of malware corpora, such as
Contagio [35] and the Android Malware Genome Project [36].

B. ANALYSIS RESULTS AND LIMITATIONS
Overall, ANDRUBIS successfully analyzed 91.67% of all apps.
For the remaining samples, 0.34% failed due to bugs in our
analysis environment and 7.99% of samples failed to install
in our sandbox due to various reasons, such as the APK file
being corrupt or the app exceeding the API level of the Android
OS version installed in our sandbox. ANDRUBIS currently runs
Android 2.3.4 Gingerbread and thus only supports apps with a
minimum required API level ≤ 10. We know that 0.78% of apps
require a newer OS version, and for 6.66% of samples we could
either not parse the manifest or they did not specify an API level.
However, this has no significant impact on malware analysis as
of now. Instead, it is mainly a concern for goodware, of which
2.11% (6,099) require a higher API level, while only 0.10%
(439) of malicious apps fail for this reason. Such a behavior
by malware authors is expected: their malicious apps require a
lower API level in order to maximize the potential user base for
their apps, and, in turn, their profit. This is also confirmed by

Figure 8 in the Appendix, which shows that malware authors are
much slower in adopting new API levels than goodware authors.

C. SCALABILITY
Currently, ANDRUBIS is capable of processing around 3,500
new apps per day, i.e., apps that have never been analyzed before
and for which no cached report is available. The analysis of an
app takes around 10 minutes, with 240 seconds analysis runtime
in the sandbox plus an additional 387.27 seconds on average for
pre- and post-processing. Pre-processing includes setting up the
emulator and loading the Android OS snapshot, installing the
app, parsing the manifest and performing static analysis on the
APK. Post-processing includes extracting protocol information
from the network traffic and preparing the final analysis report.

Judging from our experience running the Windows malware
analysis service ANUBIS and similar to Andlantis [37],
ANDRUBIS scales well by simply adding new workers to
handle the analysis of new samples should submissions increase.
However, already with the current throughput of over 100,000
apps per month, ANDRUBIS is capable of analyzing samples
at market scale. For example, Google Play, the largest app
store (by far), added, on average, 37,500 new apps per month
in the last year, with peaks of up to 85,000 new apps in
December [38]. When it comes to malware, Android still falls
far behind the plethora of Windows samples circulating in the
wild: Sophos estimates 2,000 new Android malware samples
are being discovered each day [4], a number ANDRUBIS can
handle in the current configuration and setup comfortably.

D. SAMPLE SOURCES
One limitation of a public web interface allowing anonymous
submissions is the lack of meta information associated with
submitted apps. Since the majority of apps are submitted by
registered users, however, we can associate them to sample
exchanges, part of our own crawling efforts, or the integration of
tools, such as AndRadar. Table II in the Appendix summarizes
the number of apps from each source, as well as the proportion
of benign and malicious apps (see the next section on how we
separated goodware from malware). The apps in our dataset
originate from the following eight sources:
Sample Exchange. These apps make up the majority of our
dataset and come from sample sharing with other researchers.
Most of the feeds are part of long-standing sample exchanges
that started with Windows samples, but now also include
Android samples, too.
Google Play. We initially crawled 100,000 apps from the
Google Play US Store during May and June 2012. Additionally,
since December 2013, we receive apps crawled from AndRadar
that match a seed of malicious apps and are located in the
Google Play Store. In April 2014, we started fetching the top
apps overall, top new apps and top apps per category (limited
to 500 entries each by Google Play) from the Google Play US
and AT Store on a daily basis.
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Alternative Markets. These apps are crawled by AndRadar
from 15 alternative markets, including seven Chinese and one
Russian market. This dataset is biased towards malware since
AndRadar aims at locating malicious apps.
VirusTotal. We regularly download samples from VirusTotal.
However, this dataset not only contains malware, but also a
small percentage of samples labeled as adware as well as some
samples not detected by any AV scanner.
Malware Corpora. This is a collection of manually gathered
malware samples we encountered over time as well as samples
from vetted malware corpora, such as the Contagio Mobile
Malware Dump [35], the Android Malware Genome Project [36],
and Drebin [39]. However, besides the relatively small Contagio
set (470 samples) that is regularly updated, which, in turn,
makes comparison hard, available malware corpora are already
quite dated: the 1,200 samples (49 different families) from the
Android Malware Genome Project were collected from August
2010 to October 2011, the 5,560 apps (179 families, including
the Genome Project) from the Drebin dataset were collected
in the period of August 2010 to October 2012.
Torrents. We downloaded apps from isohunt.com,
thepiratebay.se, and torrentz.eu for which the
torrent had at least ten seeders. To avoid distribution of copyright-
protected content, our torrent client did not upload any data at all.
Direct Downloads. We downloaded a set of apps through
direct downloads from various one-click hosters, including
filestube.com and iload.to.
Unknown. These apps stem from anonymous user submissions
and thus we do not have any information where they originate
from.

E. COLLECTED DATASET
The dataset gathered from samples submitted to ANDRUBIS
allows us to perform a longitudinal analysis of Android app
features in general and features specific to benign apps and
malicious apps. First, however, we need to separate the dataset
into subsets. Since the primary goal of ANDRUBIS is to provide
researchers with a comprehensive static and dynamic analysis
report of an app, not to automatically identify apps as goodware
or malware, we have to rely on AV signatures as our ground truth:
Goodware. We classify apps as goodware if they do not match
any AV signature from VirusTotal’s AV scanners. Goodware
apps make up 27.90% of our dataset.
Malware. We classify apps as malware if they match at least t
AV signatures. We experimented with different settings for the
threshold t and settled on at least 5 AV labels, ignoring all AV
labels indicating adware. With thresholds t>5 a large portion
of apps exhibiting malicious behavior, such as exploiting the
Master Key vulnerabilities (see Section IV-A7), would have
been missed. Malware apps make up 41.15% of our dataset.
All. In addition to goodware and malware our complete dataset
contains 30.95% other apps that are detected by 1 to 5 AVs
or that are classified as adware.

Estimation of Release Date. In order to perform any kind of
longitudinal analysis on our dataset and categorize apps by the
year of their release, we need to estimate the age of each sample.
Besides this yearly division of our dataset we also would like
to have a more precise estimate to allow for a fine-grained
evaluation, such as the time it takes for us to receive and
analyze samples after they have been released. We estimate the
age of an app from four data points: (1) the last modification
date of the APK file (zip_modification_date), (2) the
release date of the SDK indicated by the minimum required

API level (sdk_release), (3) the date a sample was first
published in any of the markets monitored by AndRadar
(market_release), and (4) the date a sample was first
submitted to ANDRUBIS (first_seen).

For (1), the last modification date of the APK file, we parse
the timestamp for the archive member that was modified last,
usually the app’s certificate, from the ZIP central directory file
header. Naturally, this date can be tampered with, as evidenced
by 273 apps feigning a modification date in 1980, the first year
the ZIP file format supports for timestamps, further 9,703 before
the first Android version was released in 2008, as well as 86
apps dated in the future, up to the year 2107. For (2), we parse
the minimum required API level from an app’s manifest and
map it against the Android version history [40]. For (3), we have
information from AndRadar for 68,197 apps in our dataset, since
not all markets specify the date an app was uploaded and we do
not want the overall release date of an app but the date when
a specific version (based on the MD5 file hash) was released.

In general, we trust the modification dates extracted
from the ZIP header as we only encountered relatively few
outliers exhibiting unrealistic modification dates. However,
we sanitize the zip_modification_date by checking the
sdk_release as a lower bound for when the app could have
been released in case the ZIP timestamp was predated, and the
market_release as an upper bound when the app was first
seen in the wild in case the app was postdated. In the normal
case the app requests a specific API level after the corresponding
SDK was released and the app is built before it is released to
the public, e.g., an application market. In this case we estimate
the release date (apk_date) as the date the ZIP was created:

sdk_release<zip_modified<market_release
apk_date=zip_modified

For 10,000 apps (1.04%) the ZIP file was created before the
corresponding SDK was released. This could be either due
to the ZIP file header being tampered with or the app being
part of an alpha/beta test of an unreleased SDK. Since an app
cannot be installed on devices if it requires a higher API level
than the currently available Android OS version, we assign the
date of SDK release to the release date:

zip_modified<sdk_release
apk_date=sdk_release

In only six cases the market release date indicates that the app
was published before the requested SDK level was released. This
could be due to an error on the developers side, unintentionally re-
questing a higher API level than required. In this case we choose
the maximum of the SDK release and the ZIP creation date:

market_release<sdk_release
apk_date=max(sdk_release,zip_modified)

Around 5,000 apps (0.50%) were published in a market before
the ZIP was last modified. Since this means that the ZIP header
obviously has been tampered with, we set the release date to
the market release as the first date we saw the app in the wild:

market_release<zip_modified
apk_date=market_release

We now can use the apk_date to estimate the analysis delay,
the time it takes between an app being released and the app
being submitted to ANDRUBIS. Figure 4 shows the CDF of
the analysis delay for the first and second year of operation.
Within the first year we only saw 15% of samples within one
week of their release for both malware and goodware. In the
second year this number significantly increased to over 40%
for goodware apps, in part due to our crawling of the popular
new apps from the Play Store on a daily basis. In the first year
ANDRUBIS analyzed 60%-70% of all samples within the first
three months. This number increased for apps of all categories
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Fig. 4: CDF of time between APK creation and first submission
to ANDRUBIS in the first (June 2012 - June 2013) and second
year (June 2013 - June 2014) of operation.

Fig. 5: Number of all, goodware and malware apps in our
dataset per year. The share of successful analyses is highlighted
in a darker shade.

to 80% in the second year. Finally, the number of apps analyzed
within six months of their release increased from 2012 to 2013
by 10 percentage points for apps of all categories, to close to
90% of goodware and 95% of malware samples.

Finally, for categorizing our dataset by release year, we also
include the date ANDRUBIS first saw an app in the estimation and
assign min(apk_date,first_seen) as the final app release
date. This results in the dataset depicted in Figure 5, separated
by app release year and category (All, Malware, Goodware).
Android was released in September 2008, however, malware first
surfaced in 2010 [41] and apps released before 2010 amount to
less than 0.76% of all apps in our dataset, thus, we focus in our
following evaluation on apps released between 2010 and 2014.

IV. ANDROID MALWARE LANDSCAPE
We already used the dataset described in the previous section in
prior work for exploring WebView-related vulnerabilities [42].
Based on apps collected between July 2012 and March 2013
we determined that 30% of apps were vulnerable to web-based
attacks by exposing native Java objects via JavaScript.

In the following, we give a summary of apps’ static analysis
features and behavior during dynamic analysis and identify
trends for All, Goodware and Malware samples over the past
four years from 2010 to 2014. As our observations show,
dynamic analysis is increasingly able to capture behavior
otherwise missed by static analysis. This is in part due to the
increasing use of dynamic code loading amongst malicious and
benign apps and their use of obfuscation techniques and/or DRM
protection. Additionally, while 57.08% of malware samples
employ reflection with no significant change over the years,
use of reflection amongst all apps has increased significantly

from 43.87% in 2010 to 78.00% in 2014, and even more in
goodware (from 39.55% to 93.00%). Therefore, it is essential
for large-scale evaluations to include dynamic analysis systems.

A. OBSERVATIONS FROM STATIC ANALYSIS
While dynamic analysis is gaining importance in forming a
complete picture about an app’s functionality, for some features
evaluation of static features already provides valuable insights.
In this section we take a look at permission requests and their
usage according to static analysis, application names, developer
certificates, resources sharing between apps, registered broadcast
receivers, the use of third-party libraries and the exploitation
of Master Key vulnerabilities.

1) Requested Permissions: Android apps can define and
request arbitrary permissions: in fact, we observed almost 30,000
unique permissions being requested overall. Here, we focus on
permissions defined and safeguarded by the Android OS. In ad-
dition to parsing all requested permissions from the manifest, we
statically extract the usage of permissions from the app’s source.
While this approach ignores permissions that are requested, but
only used in code dynamically loaded at runtime, we could use
ANDRUBIS’s method tracer (Section II-B3), to determine the per-
mission usage during dynamic analysis in future experiments. For
now the dynamic extraction of used permissions is in an experi-
mental state and results are only available for a subset of samples.

We statically extract the usage of 143 permissions, covering
the most interesting and commonly requested permissions as
shown in Table III (in the Appendix). In line with previous
findings on permission usage amongst malware, malicious
samples generally request more permissions than goodware, but
use less of them: malicious apps request 12.99 (11.57 when only
looking at the subset of permissions we can statically extract)
permissions on average, but use only 5.31 of them, goodware
apps on the other hand request 5.85 (5.56) permissions on
average and use 4.50 of them. One explanation for this behavior
is that malware samples request more permissions during
installation than needed so that they have the possibility to load
other code parts that use these permissions later on. Permission
requests by malware have also increased from an average
of 11.46 (10.19) in 2010 to 15.33 (13.93) in 2014, with the
average number of used permissions increasing only from 5.51
to 5.86. The number of requested permissions for goodware has
increased from 3.74 (3.58) in 2010 to 9.38 (8.45) in 2010, while
the number of used permissions also increased from 3.13 to 5.62.
For individual samples, the permission usage ratio has declined
for both goodware and malware, however, more significantly
for goodware: samples in this category from 2014 only use
13.38% of requested permissions in their code – a possible
side effect of the increased use of dynamic code loading (see
Section IV-B4). Figure 6 illustrates this development.

Table III shows an overview of the most frequently requested
permissions for malware and goodware. While the most
commonly requested permissions for both malware and goodware
are related to accessing the Internet, checking the network
connectivity and reading device specific identifiers from the
phone state, the majority of malware samples also requests SMS-
related permissions. Furthermore, the possibility to manipulate
shortcuts on the home screen can be used for phishing attacks
and is frequently requested by malware as well. Another critical
permission requested by malware is SYSTEM_ALERT_WINDOW,
which allows an app to show windows on top of all other apps,
overlapping them completely. It is used to display aggressive
ads and by ransomware that draws a window over all other apps
to keep the user from accessing any other phone functionality.
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Fig. 6: Goodware (GW) and malware (MW) apps request an
increasing number of permissions (overall as well as from the
subset of permissions we statically extract), but permission
usage stays constant – a side effect of the increasing use of
dynamic code loading and obfuscation.

It is also important to note that not only individual but also
combinations of permissions can be security-critical: while the
INSTALL_SHORTCUT permission, which is requested by more
than half of the malicious apps, is classified as dangerous, the
same functionality can be achieved through the combination
of the normal READ_SETTINGS and WRITE_SETTINGS
permissions [43]. This is common practice amongst malware,
with 10.88% of malware samples requesting both permissions,
while only 0.20% of goodware samples do so.

During our evaluation of dynamic analysis features (see
Section IV-B), we observed samples attempting to send SMS,
connect to the Internet or accessing the SD card, without having
the appropriate permissions – actions that will be prohibited by
the Android OS. One explanation, besides a simple oversight,
is developers mistyping the intended permission in some cases,
for example as andorid.permission.*.

2) Application Names: The package name is the official iden-
tifier of an app, i.e., no two apps on a given device can share the
same package name. Some markets, such as Google Play, also use
it as a unique reference, but developers are not restricted from cre-
ating an app with an already existing package name. For malware
authors reusing the package name of a legitimate app is also a
way to masquerade as a benign app. Consequently, malware sam-
ples are far more likely to reuse package names than goodware
samples: while 73.78% of goodware package names are unique,
the same holds true for only 25.72% of malware’s package names.
Note, this number is likely to be slightly biased by submissions
from AndRadar that explicitly locates apps in markets based on
their package name to model and analyze how they spread [6].

A total of 8.50% of malware samples share their package
name with legitimate apps from our goodware set – in
total 4,059 distinct package names, half of which are
currently available in the Google Play Store. Among the most
frequently repackaged apps are Armor for Android Antivirus
(com.armorforandroid.security, 387 samples), Steamy
Window (com.appspot.swisscodemonkeys.steam, 93
samples), Opera (com.opera.mini.android, 68 samples),
and Flappy Bird (com.dotgears.flappybird, 23 samples)
– besides the paid Armor Antivirus all apps exceed 5 million
downloads on the Google Play Store.

By far the most often shared package name, shared by
1,735 malicious apps with a single legitimate Google Play

app, is com.app.android, however, more likely due to
careless naming on the legitimate app’s developers side. In
general, authors of malicious apps tend to favor generic
names and reuse them between samples, com.software.app
and com.software.application being the most popular
ones with 9,256 and 8,321 unique samples respectively. Start-
ing in 2012, we observed malware authors adopting ran-
dom looking package names, such as ouepxayhr.efutel,
ovbknnfm.xwscmnoi and rpyhwytfysl.uikbvktgwp. F-
Secure observed those package names being particularly popular
amongst the Android.Fakeinst family [2]. However, contrary to
the first impression, package names are not randomized on a per-
app basis, as evidenced by up to 3,234 unique samples per name.

3) Certificates: Certificates are a corner-stone in Android
security: each and every Android app has to be shipped with its
developer’s certificate and signed with his private key so that it
can be installed. Android uses the certificate to enforce update
integrity, i.e., it only allows updates signed with the same
key, and it uses it to allow resource sharing and permission
inheritance between apps from the same author [44].

Google does not impose any restrictions on the certificates
used to sign Android apps and over 99% of all certificates are
self-signed. We collected increasingly more apps signed by the
same key, for goodware and malware alike. While, in 2010,
19.21% of all keys were used to sign more than one goodware
app and 28.57% of the keys were used to sign more than one
malicious one, this increased to 40% for both goodware and
malware in 2014. This not only means that we are collecting
more apps by the same developers, but also that blacklisting
certificates used to sign malware is a viable option to keep
malware from spreading. Especially widely used are four test
keys distributed as part of the Android Open Source Project
(AOSP): 8.92% of malicious samples are signed with one of these
test key, however, the ratio significantly decreased from 65.29%
of malicious apps in 2010 to 7.29% in 2014. Although those
keys should not be used by legitimate apps, 2.26% of goodware
apps are signed with a publicly available test key – making them
vulnerable to attack: as we will show in the next section, if a user
has such an app installed, malware signed with the same test
key can potentially share permissions with the vulnerable app.

To our surprise we also found four samples, each labeled by
more than 11 AV scanners as part of the Android.Bgserv malware
family, that are signed with a valid Google certificate. These apps
with the package name com.android.vending.sectool.v1
are a malware removal tool by Google, mistakenly flagged by
malware by numerous AV vendors [26].

4) Application Interdependencies: The Android system as-
signs, by default, a unique user ID (UID) to each app and runs
it as that user in a separate process. Apps, however, can share
their UID with other apps by specifying a sharedUserId in
the manifest. This allows apps to share data, run in the same
process, and even inherit each other’s permissions [44], all under
the prerequisite that apps are signed with the same key. Clearly,
this feature also allows collusion amongst apps [45]: a malicious
payload could be spread across multiple innocent looking apps.
We saw this feature more commonly implemented in goodware
than in malware: 1.14% of apps share their UID while only 0.29%
of malicious apps do. This functionality becomes especially
security critical when combined with an exploit for the powerful
Master Key vulnerabilities (detailed in Section IV-A7). In
theory, attackers could inject their code into apps not requesting
any permissions at all but inheriting permissions from more
privileged apps through a shared UID. Apps can even try to gain
system privileges by exploiting an app signed with a platform
certificate and sharing the UID with android.uid.system.
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Furthermore, with numerous apps being signed with the test
key from the AOSP, crafting a malicious app inheriting the
permissions from other apps is possible even without having to
utilize an exploit to circumvent the app signing process. In fact,
6.79% of benign and 17.57% of malicious samples that share a
UID are signed with a public test key. This becomes especially
critical when the Android OS itself is signed with a public
key: according to DroidRay [46], a recent security evaluation of
custom Android firmware, out of 250 firmware images, 56.80%
were signed with a key pair from the AOSP. In our dataset,
we identified 84 apps (4 of which were not detected by any
AV scanners, the remainder was labeled as Android.Fjcon) that
were capable of gaining system privileges through UID sharing
with android.uid.system. All samples were signed with the
same AOSP key pair used to generate the system signature for
134 (53.60%) of the firmware images evaluated by DroidRay.

5) Broadcast Receivers: Apps can register broadcast re-
ceivers for arbitrary custom events, however, we focus our
analysis on broadcast receivers listening for system events.
Broadcast receivers are by far more widely used in malicious
apps than in benign apps: 82.18% of all malware samples
register one or more broadcast receivers, while only 41.86% of
goodware sample use this feature. Table IV (in the Appendix)
lists the most frequently registered broadcast receivers for both
categories. Goodware mainly watches for notifications to update
their widgets, install referrers from the market and a user being
present, probably to suspend idle mode quickly whenever a user
unlocks the phone so that new data can be fetched and the
app’s status can be updated. Malware, on the other hand, often
registers itself as a service, which is running in the background,
and does not care for user input. More than half of all samples
listen for the BOOT_COMPLETED event, which triggers as soon
as the phone has booted the Android OS, and for the event that
is published upon receipt of incoming messages, both text-based
(SMS_RECEIVED) and data-based (DATA_SMS_RECEIVED).
However, we only saw listeners for data-based SMS in 2012 and
2013 with 24.43% and 10.41% of malware samples listening for
this event. We also see growing interest of malicious apps in the
CONNECTIVITY_CHANGE and AIRPLANE_MODE receivers since
2012 with a peak of 17.93% and 14.99% in 2013 respectively.
Furthermore, malicious apps started using Device Administrator
Privileges, which makes them harder to uninstall. The latter are
used by 11.94% of malware samples in 2014, which register
for the DEVICE_ADMIN_ENABLED event.

6) Third-Party Libraries: We checked all apps in our dataset
against a list of the 53 most popular advertisement (ad)
libraries according to AppBrain [47]. Fewer malicious (17.45%)
than benign (44.32%) apps come bundled with ad libraries,
presumably in part because we excluded samples labeled as
adware from our malware dataset. However, with ad fraud
being one way to monetize malicious app installs, malicious
samples include more ad libraries simultaneously: we saw a
maximum of 13 ad libraries in a single goodware app and 14 ad
libraries in a single malware app with 1.56 and 2.05 libraries on
average respectively. Table V (in the Appendix) lists the most
popular ad libraries for goodware and malware. Besides Google’s
AdMob being the most popular across both categories, albeit
with diverging percentages of over 35% in goodware to only
5.7% in malware, there is little overlap. With mobile malware
being particular prevalent in China [48], malicious apps mainly
include Chinese ad networks. Malware also favors aggressive
ad libraries, such as AirPush and Adwo, often classified by AV
scanners as adware and banned from Google’s Play Store [49] by
policy because they push advertisements to the notification bar.

Social networking libraries are used in 11.14% of goodware
apps (8.86% Facebook, 3.38% Twitter, 1.89% Google+), while
the number of malicious apps including such libraries is a negli-
gible 0.78% (0.66% Facebook, 0.13% Twitter, 0.09% Google+),
possibly indicating those libraries are shipped with the original
app that was targeted by repackaging to include malicious code.

The same as for social networking libraries holds true for
the use of billing libraries: 3.58% of goodware and only
0.53% of malware apps make use of billing services (3.08%
Google Billing, 0.57% Paypal, 0.17% Amazon Purchasing
and 0.03% Authorize.net in goodware; 0.35% Google Billing,
0.19% Paypal and 0.05% Amazon Purchasing in malware).
Billing services for in-app purchases are harder to monetize for
malware since payment providers usually have refund policies.

7) Master Key Vulnerabilities: In 2013 researchers reported
the Master Key vulnerability [50] in the Android app signing
process, which allows an app’s content, including its code,
to be modified without breaking the signature – essentially
allowing attackers to inject malicious code into any legitimate
applications without repackaging them. This vulnerability stems
from discrepancies between the handling of the ZIP file format
between the signature verification and installation process in
Android. Shortly after the original Master Key vulnerability was
published, two similar vulnerabilities were discovered [51,52].

Bug 8219321, the original Master Key vulnerability, is based
on the fact that the ZIP file format allows two files with the
same file name, thus allowing attackers to hide an additional
classes.dex file that is deployed by the installer instead
of the original one that is checked by the signature verifier.
We saw this vulnerability being exploited in 1,152 samples
(0.11%), all from 2013 and 2014, and only in malware, possibly
due to AV scanners automatically flagging apps as there is no
legitimate reason for this behavior.

Bug 9695860 stems from a signed unsigned integer mismatch
in the length of the extra field of the ZIP file header. In
addition to allowing attackers to inject an app with a malicious
classes.dex, the exploitation of this vulnerability also breaks
analysis tools utilizing the unpatched version of the Python
zipfile [53], such as Androguard in the default configuration.
We saw 4,553 samples (0.44%) triggering the Python bug.
However, we only found two samples with an extra field length
triggering an integer overflow and thus the vulnerability, one
of them being a proof of concept [54].

Bug 9950697 lies within the redundant storage of the length
of the file name in both the central directory of the ZIP file
as well as the local file header. Again this vulnerability allows
attackers to specify a file name large enough for the installer
to skip the original classes.dex file and install the injected
one. However, we only observed this bug being exploited in
447 (0.05%) of all samples (starting already in 2011 with the
majority of samples being from 2013), with 92 malware and
26 goodware samples respectively.

B. OBSERVATIONS FROM DYNAMIC ANALYSIS
In contrast to static analysis, dynamic analysis lets us monitor
an app’s behavior during runtime – including behavior caused by
dynamically loaded code. In addition, the obtained information
is more comprehensive and includes full paths of file system
accesses, called phone numbers, recipients and contents of SMS,
leaks of sensitive information, as well as usage of cryptographic
algorithms and a full profile of the app’s network behavior.

1) File Activity: Apps can both read and write the internal
storage as well as external storage from SD cards. Overall
72.49% of goodware and 95.99% of malware read files, and
83.11% of goodware and 94.70% of malware write to the
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file system during dynamic analysis in ANDRUBIS. When
distinguishing file system access to the primary storage and
access to the secondary storage, i.e., the SD card, it becomes
apparent that SD card access is far more prevalent amongst
malware: 22.02% of malicious apps read and 27.82% write files
to the SD card, while only 2.91% of benign apps read and 6.69%
write to external storage. Starting in Android 3.2 (Honeycomb)
Google restricted third-party apps from accessing the SD card
by limiting the WRITE_EXTERNAL_STORAGE to the primary
storage and requiring the WRITE_MEDIA_STORAGE, which is
only granted to system apps, for write access to the SD card.
However, this change was largely ignored by OEM and custom
firmware developers [55]. In our dataset 93.08% of goodware
and 97.69% of malware apps that write to the SD card request
the first permission, while only 0.59% of goodware and 0.08%
request both. Static analysis completely failed to determine
the usage of the WRITE_EXTERNAL_STORAGE permission and
thus the write access to the SD card in any app. Furthermore,
despite Google’s policy to restrict write access to SD cards,
this behavior has been steadily increasing in goodware apps
from 2.89% in 2010 to 16.64% in 2014. Writing to SD storage
in malware has been a constant behavior in around 30% of
malware. This is likely to increase even more in the future with
new possibilities for monetization being explored: recently the
Cryptolocker family started encrypting files stored on the SD
card and demanding ransom for the decryption key [56].

2) Phone Activity: Concerning mobile-specific behavior,
only very few applications initiated phone calls during dynamic
analysis: 0.24% of goodware apps and only 0.04% of malware
apps. For both malware and goodware, 98% of those apps
requested the corresponding CALL_PHONE permission, however,
static analysis failed to determine any usage of this permission
from the apps’ source.

While the percentage of apps sending SMS in the goodware
dataset is as low as the percentage of apps initiating phone
calls (only 0.26%), we observed 15.00% of malicious apps
sending text messages. This comes as no surprise: sending SMS
to premium numbers is a popular monetization vector of mobile
malware [4]. Again, 98.57% (goodware) and 99.15% (malware)
of those apps requested the necessary SEND_SMS permission,
while static analysis revealed that 85.37% (goodware) and
81.79% (malware) of those apps actually use this permission in
their source code – again showing the value and importance of
dynamic analysis to uncover behavior from hidden or obfuscated
function calls. Phone numbers tend to be shorter for malware,
also indicating the use of premium numbers – goodware apps
send SMS to 410 unique numbers with an average length
of 7.18 digits, while the 1,943 distinct numbers malware
sends SMS to is only 4.26 digits on average. Furthermore, we
observed malware samples sending up to 120 SMS to premium
numbers during four minutes of dynamic analysis.

3) Data Leakage: Data leakage is significantly more prevalent
in malware than in goodware: overall, 14.28% of goodware apps
leak information over the network, while 42.53% of malicious
apps do so. When looking at the dataset as a whole, data leakage
to the network overall occurred in 38.79% of all apps and
significantly increased from 13.45% in 2010 to 49.78% in 2014.
Both goodware and malware leak device specific identifiers, such
as the International Mobile Station Equipment Identity (IMEI),
International Mobile Subscriber Identity (IMSI), Integrated
Circuit Card Identifier (ICCID) and the phone number. Goodware
mainly leaks the IMEI, while a quarter of malware leaks the
IMSI and almost 14% of malware leaks the user’s phone number.
Leakage of names and phone numbers from the user’s address
book is also more common amongst malware than it is amongst

benign apps. Instead, goodware mainly leaks the location, an
information source less commonly leaked by malware samples.
Few samples in general leak information on installed packages,
the contents of SMS, the call log, and browser bookmarks.
Table VI (in the Appendix) summarizes the information sources
most commonly leaked to the network by goodware and malware.

Data leakage via SMS occurred only in 0.04% of goodware
and in 0.72% of malware samples. This number, however, has
increased over the past years, with 1.87% of malware samples
leaking identifiers such as the IMSI, IMEI, ICCID and the
phone number, but also forwarding incoming SMS and the call
log via SMS in 2014.

4) Dynamically Loaded Code: Android apps can load code
at runtime to dynamically extend their functionality. However,
this technique comes with severe security implications. While
dynamic code loading is popular for legitimate reasons, such
as loading external add-on code, shared library code from
frameworks, or dynamically updating code during beta and/or
A/B testing, it is especially interesting for malware. Since apps
are typically inspected only once, either by an app market
or by an AV scanner at installation time, malicious apps can
download and load their malicious payload later at runtime to
evade detection. Furthermore, the unsafe use of code loading
techniques can also make legitimate apps vulnerable to code
injection techniques, as shown by Poeplau et al. [57].

DEX Classes. One possibility to dynamically extend an app’s
functionality is to load modules at the Dalvik VM level through
the DEX class loader. We observed this behavior for 2.97% of
goodware and for 4.46% of malware apps, with a significant
increase over the past two years. Static analysis successfully
identifies the invocation of the DexClassLoader in 98.88%
of goodware and 97.20% of malware respectively. On average,
goodware loads 1.28 and malware loads 1.59 DEX classes. The
maximum of different classes loaded is 37 for the Metasploit
payload, 25 classes for samples from the Android.SmsSpy
family and 9 classes for goodware in general.

Native Libraries. Overall, both goodware and malware apps
load native libraries in equal proportions: we observed 8.60%
and 8.50% of all benign and malicious apps loading native code
during dynamic analysis, with a clear upward trend especially
amongst goodware. The sources for the loaded native code
and their impact differ: at a finer granularity, we distinguish
between the number of system native libraries loaded and
custom, non-system, libraries loaded. Custom libraries are far
more dangerous than those provided by the Android system
itself. The reason for system library usage is simple: games and
graphically demanding apps make use of hardware-accelerated
technologies found in modern graphics cards, like OpenGL or
video decoding, for both performance reasons and increased
battery life. Custom libraries, however, tend to be used by
malware for a number of nefarious purposes, including the
elevation of privileges through root exploits.

Goodware apps load 52.47% and 52.26% code from the system
and the data directory respectively, contrary, only 19.46% of
malware samples load native system libraries, while 84.19% load
their own bundled native code or fetch it from remote servers.
While for malware the percentage of system libraries loaded
decreased from 2010 to 2014 by 13 percentage points and the
usage of custom libraries increased by 20 percentage points, this
trend is more severe for goodware: in 2010, 74.11% of goodware
apps loaded native code from the system and only 29.57%
loaded custom code; in 2014, 30.95% of apps loaded code from
the system and 73.37% loaded it from the data directory.
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Fig. 7: Increasing use of DEX and native code loading overall,
and in goodware (GW) and malware (MW).

Static analysis was far less successful in identifying native
code loading compared to DEX class loading and only identified
the loadLibary() call in 54.40% of goodware and 83.25%
of malware. These numbers correspond to the number of apps
shipping with unencrypted ELF libraries that can be identified
based on their file signature: 54.29% in the case of goodware
and 85.23% in the case of malware.

Dynamic code loading significantly increased during our
observation period, especially for goodware over the past
two years, as shown in Figure 7: in 2014, 29.29% of benign
apps loaded Dalvik and 20.82% native code, while 13.15%
of malicious apps loaded Dalvik and 12.57% native code.
Furthermore, loading native libraries and DEX classes is not an
either-or decision: 1.25% of all malware (5.43% in just 2014)
and 0.45% of all goodware (4.92% in 2014) combine those
techniques to load both native and Dalvik code.

5) Cryptographic API Usage: Another interesting case study
is the use of cryptographic protocols. During dynamic analysis,
we observed the usage of the Java crypto API in 5.63% of mali-
cious apps, in contrast to only 1.10% of goodware apps. Interest-
ingly, for those apps we could statically determine the use of cryp-
tography in 99.21% of cases for goodware, but for only 43.24%
of malware – either due to this part of the code being obfuscated
and loaded dynamically at runtime. Overall, static analysis
revealed the use of javax/crypto/* in 44.83% of goodware
apps, increasing from 11.12% in 2010 to 79.18% in 2014. For
malware, we did not see such a development with the Java crypto
API being used by only 29.84% overall, likely due to malware
shipping their own implementations in order to evade detection.

The most popular algorithms observed during dynamic
analysis of goodware are AES (66.75%), PBEwithMD5andDES
(15.03%), DES (11.98%), and RSA (5.08%). Malware, on the
other hand, mainly used AES (74.82%), Blowfish (14.31%),
DES (8.78%), and RSA (1.20%). We also observed a trend
toward stronger cryptographic algorithms in malware: while
DES was the predominantly used algorithm amongst malware
in 2010 (98.44%), its usage declined significantly to 1.53%
in 2013. Instead, in 2012 malware authors started adopting
the stronger Blowfish algorithm, which is now being used by
31.58% of all malware apps from 2013, while we have not
seen a single goodware app using Blowfish.

6) Network Activity: We observed network traffic in
goodware and malware apps alike – 71.11% of goodware
and 80.36% of malware, with almost 99% of those samples
requesting but only 70.97% of benign and 61.43% of malicious
samples using the INTERNET permission according to static
analysis. This numbers decreased for malware in 2014 to only
94.40% requesting and 58.84% using the permission, indicating
malware circumventing the permission system by performing

network activity through other apps installed on the device,
such as the browser, for example.

Almost all apps that use the Internet query domain names:
99.91% of malware and 97.34% of goodware perform DNS
queries, but while one third (32.33%) of the queries by
malicious samples fail and result in an invalid (NX) domain,
only 10% of queries from goodware samples do.

UDP traffic is almost limited to DNS, with only a few
samples using NTP. However, 55.33% of malware and 23.62%
of goodware also establish TCP connections. This number
increased for malware from 27.69% in 2010 to 58.65% in
2013, and decreased to 45.84% in 2014; for goodware it
monotonically increased from 12.81% in 2010 to 43.50%
in 2014. The most commonly observed network activity for
malware occurred on port 443 (HTTPS, 44.09% of samples),
port 80 (HTTP, 15.52%), and port 5224 (XMPP/Google Talk),
8245 (DynDNS), and 9001 (Tor) with less than 0.2% of samples
each. For goodware we observed port 443 (HTTPS, 15.58%),
port 80 (HTTP, 7.31%), and port 1130 (CASP, 0.46%).

Other protocols were hardly ever used: we only observed 77
apps in our whole dataset establishing FTP connections and 14
samples using IRC. We saw, however, 352 samples from 2013
and 2014 establishing SMTP connections and sending emails.
The majority of those samples are classified by AV scanners
as malware and they leak sensitive information such as the
contents of the address book and incoming SMS via email to
addresses from Chinese freemail providers, such as NetEase
(163.com, 126.com) and Tencent (qq.com).

7) Cross-Platform Malware: In 2013 Android malware
started to download a malicious Windows payload (Back-
door.MSIL.Ssucl) and saving it together with an autorun.inf
file in the root directory of the phone’s SD card, hoping it
would be automatically executed on Windows computers once
the phone was connected to the PC via USB [58]. We only saw
this behavior in 11 apps overall, nine of which were different
versions of the goodware samples iSyncr and RealPlayer that
placed their Windows installer together with autorun.inf on
the SD card. Only 19 goodware samples embedded executables.
The only malicious samples we saw exhibiting this behavior were
from the Android.UsbCleaver [59] family. Overall, we detected
447 malware samples with a total of 27 different embedded
executables that are flagged by at least one AV scanner.

There have been reports of Windows malware attempting to
infect Android devices, and even installing the Android Debug
Bridge (ADB) to do so [60]. We have only seen 119 Windows
samples in ANUBIS attempting to drop APK files, 16 of which
also tried to access the ADB (currently not installed in our
Windows environment). The majority of those files, however,
failed to download completely or seem to belong to rooting
utilities. VirusTotal has labels for 56 out of the 99 dropped
APKs, with 33 not being detected by any AV scanners, 20
detected, as root exploits and the remaining three belonging
to Android.AndroRat and Android.FakeAngry.

V. RELATED WORK
For Windows malware, Bayer et al. [20] performed a similar anal-
ysis to ours on a dataset of 900,000 Windows samples ANUBIS
received within its first two years of operation. Here, however,
we focus on related work on the Android malware landscape.

Android security and the detection and characterization of
Android malware in particular has been an extremely active field
of research in the past years. Felt et al. [61] analyzed a total of 46
iOS, Symbian and Android malware samples collected between
2009 and 2011 to provide one of the first surveys on mobile
malware and their author’s incentives. The Android Malware
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Genome Project [36] was a further attempt to systematize
Android malware behavior and provided a publicly available
dataset used in many following evaluations. The dataset, however,
is now showing its age: the samples being collected between
2010 and 2011 behave significantly different than apps from
2012 to 2014, as we have shown in our evaluation (Section IV).
Another available malware dataset is the one used by Drebin [39]
for classifying Android malware. This dataset also includes the
Genome Project and the most recent samples were collected in
2012. Further studies on malware behavior mainly focused on
the practice of repackaging and the pervasiveness of repackaged
apps in alternative app stores [62,63].

TaintDroid [28] was the first work to propose taint tracking for
monitoring data flow dependencies and data leakage in Android
apps and is now at the core of many sandboxes, such as ours, to
track data leaks. DroidScope [9] is a dynamic analysis system
solely based on VMI. While this approach has advantages, such
as whole-system taint analysis, the delicate reconstruction of
Java objects and the like from raw memory regions requires
substantial adaption effort with each Android OS update.

SmartDroid [64] and AppsPlayground [65] aim at improving
the stimulation of apps during dynamic analysis. They try to
drive the app along paths that are likely to reveal interesting
behavior through targeted stimulation of UI elements. Their
approaches can be seen as intelligent enhancements of the
Application Exerciser Monkey and our custom stimulation
of activity screens. They are largely orthogonal to our work,
which focuses on stimulating broadcast receivers, services and
common events, instead of UI elements.

Concerning systems for the large-scale dynamic analysis of
Android applications, Bläsing et al. [8] proposed AASandbox,
the first dynamic analysis platform for Android based on system
call monitoring. ANANAS [11], on the other hand, is a dynamic
analysis framework focusing on extensibility through modules.
DroidRanger [66] pre-filters applications based on a manually
created permission-fingerprint before subjecting them to dynamic
analysis. In contrast to this approach, we analyzed every app,
yielding full behavioral profiles to base our evaluation on. Further-
more, DroidRanger performs monitoring through a kernel module
instead of VMI and focuses only on system calls used by existing
root exploits. Finally, DroidRanger does not employ stimulation
techniques. None of the above tools are publicly available.

Dynamic analysis systems that are publicly available are
CopperDroid [10,67], Tracedroid [68,69], SandDroid [70], and
Mobile-Sandbox [7,71]. CopperDroid performs out-of-the-box
system call monitoring through VMI and reconstructs Dalvik
behavior by monitoring Binder communication. Tracedroid
generates complete method traces by extending the Dalvik
VM profiler and was subsequently integrated into ANDRUBIS,
but it is also available as a standalone service. SandDroid
performs monitoring of the Dalvik VM, but does not allow
any network connections to the outside and therefore misses
behavior in apps checking for Internet connectivity [16]. Mobile-
Sandbox monitors native code through ltrace in addition to
instrumenting the Dalvik VM. However, both SandDroid and
Mobile-Sandbox seem to be unable to cope with their submission
load: SandDroid has only analyzed around 25,000 samples to date
and samples we submitted have been stuck in the input queue for
almost nine months, while Mobile-Sandbox reports a backlog of
over 300,000 samples with no samples seemingly being analyzed.
We emphasize that, to the best of our knowledge, ANDRUBIS is
the only dynamic analysis sandbox operating on a large-scale,
providing a thorough analysis on both Dalvik and system level,
and typically returning a report in ten minutes or less.

VI. LIMITATIONS
One limitation of any dynamic analysis approach is evasion.
As long as a sandbox is not capable of perfectly emulating a
system, a possibility to detect it exists. Petsas et al. [72] and
Vidas et al. [16] recently explored the possibility to fingerprint
Android sandboxes, and found that all, including ours, are
susceptible to evasion. Sandbox detection techniques range from
static characteristics of the specific Android OS installation to
information from sensors, to the detection of the underlying
virtualization technology. One proof of concept [73] is able to
detect any QEMU-based environment based on binary translation:
QEMU (and other emulators) usually take a basic block, translate
it, and execute the whole resulting basic block on the host
machine. Unfortunately, this property allows for an easy detection
of emulated code, since the basic block cannot be interrupted
by the guest operating system’s scheduler. As a countermeasure,
we enabled QEMU single-step mode, which makes ANDRUBIS
undetectable by this evasion technique. However, this mode
introduces an analysis overhead of 29% compared to 7% with
Dalvik monitoring and 18% with QEMU VMI [23]. Generally,
dealing with analysis evasion is a never-ending arms race
between security researchers and malware authors.

A further limitation of dynamic analysis is code coverage.
While we try to increase behavior seen during analysis through
various stimulation techniques, a more intelligent user interface
stimulation than the random input stream by the Android
Exerciser Monkey could provide more complex and user-like
input and, in turn, trigger much more behavior from the apps
under analysis.

Currently public submissions to ANDRUBIS are limited to
a file size of 8MB. This limit, however, is simply a limitation
of our web interface and not a fundamental limitation of our
analysis. We are currently evaluating to increase this limit,
while keeping storage requirements at an acceptable level
without having to discard apps after analysis.

Finally, a limitation of any analysis system allowing submis-
sions from anonymous sources is the lack of metadata and ground
truth. We have no indication when and where samples were found
or how widespread they are in the wild. We tried to mitigate this
in part by collecting metadata from markets with AndRadar [6].
Lacking ground truth, we have to rely on AV signatures to
classify our dataset in goodware and malware, but we are ex-
perimenting with machine-learning approaches to automatically
classify samples with higher accuracy than related work.

VII. CONCLUSION
In this paper we presented ANDRUBIS, a fully automated
large-scale analysis system for Android apps that combines static
analysis with dynamic analysis on both Dalvik VM and system
level. ANDRUBIS accepts public submissions through a web
interface and a mobile app and is currently capable of analyzing
around 3,500 new samples per day. With ANDRUBIS, we provide
malware analysts with the means to thoroughly analyze Android
apps. Furthermore, we provide researchers with a solid platform
to build post-processing methods upon based on an app’s
static features and dynamic behavior. For example, leveraging
machine-learning approaches one can use our analysis results
to tackle the problem of judging whether a previously unseen
app is malware significantly more accurate than prior work.

ANDRUBIS has analyzed over 1,000,000 Android apps to
date. On an evaluation of this dataset spanning samples from
four years, we showed changes in the malware threat landscape
and trends amongst goodware developers. Dynamic code
loading, previously used as an indicator for malicious behavior,
is especially gaining popularity amongst goodware, and, in turn,
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loses significant information value when distinguishing between
benign and malicious apps. Due to this development, static
analysis tools alone are increasingly unable to completely capture
an app’s behavior, making dynamic analysis indispensable for
a comprehensive analysis for a large number of apps.

In future work, we plan to explore the network behavior of An-
droid malware further to identify C&C communication patterns
and shared infrastructures with Windows malware. Furthermore,
we are exploring the option of releasing a comprehensive mal-
ware dataset, once we sorted out legal and confidentiality issues.
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APPENDIX

Fig. 8: Heatmap of API level adoption after Android SDK releases for goodware (left) and malware (right): goodware authors
adopt new API levels much faster than malware authors, who try to maximize the potential user base for their apps.

TABLE II: Sources for apps in our dataset: sample exchange feeds have a high proportion of malware, while the Google Play
Store and apps from torrents and direct downloads have low infection rates. Interestingly, not all samples from malware corpora
are detected by AV scanners.

Category Sample Exchange Google Play Alternative Markets VirusTotal Malware Corpora Torrents Direct Downloads Unknown

All 683,842 125,602 60,951 37,499 5,997 17,916 1,704 159,040
Goodware 5.2% 88.73% 18.15% 0.20% 0.04% 88.50% 96.36% 78.65%
Malware 55.3% 1.60% 27.51% 98.65% 97.87% 1.60% 1.59% 7.56%

TABLE III: Most frequently requested permissions in
goodware and malware by the percentage of apps in each set.

Goodware Malware

83.97% INTERNET 95.37% INTERNET
61.54% ACCESS NETWORK STATE 91.42% READ PHONE STATE
43.65% WRITE EXTERNAL STORAGE 82.79% WRITE EXTERNAL STORAGE
38.09% READ PHONE STATE 71.99% ACCESS NETWORK STATE
23.59% ACCESS COARSE LOCATION 69.91% SEND SMS
22.51% VIBRATE 60.67% RECEIVE SMS
21.56% ACCESS FINE LOCATION 55.66% INSTALL SHORTCUT
19.32% WAKE LOCK 51.40% WAKE LOCK
18.05% ACCESS WIFI STATE 48.73% READ SMS
12.11% READ CONTACTS 45.62% RECEIVE BOOT COMPLETED
11.83% RECEIVE BOOT COMPLETED 40.15% ACCESS WIFI STATE
8.30% CALL PHONE 32.92% WRITE SETTINGS
8.15% CAMERA 30.05% READ CONTACTS
7.66% GET TASKS 25.74% CALL PHONE
7.45% SEND SMS 24.70% ACCESS COARSE LOCATION
6.72% GET ACCOUNTS 24.30% ACCESS FINE LOCATION
6.31% WRITE SETTINGS 23.83% VIBRATE
6.11% WRITE CONTACTS 23.04% GET TASKS
5.02% SET WALLPAPER 20.15% WRITE SMS
4.96% CHANGE WIFI STATE 20.12% CHANGE WIFI STATE
4.57% INSTALL SHORTCUT 19.21% SYSTEM ALERT WINDOW
4.47% RECEIVE SMS 19.11% CHANGE NETWORK STATE
4.03% RECORD AUDIO 17.81% GET ACCOUNTS
4.00% READ CALENDAR 13.93% INSTALL PACKAGES
3.79% READ LOGS 13.23% UNINSTALL SHORTCUT

TABLE IV: Most frequently registered broadcast receivers in
goodware and malware by the percentage of apps in each set.

Goodware Malware

11.29% BOOT COMPLETED 56.32% BOOT COMPLETED
8.93% APPWIDGET UPDATE 41.73% SMS RECEIVED
8.74% INSTALL REFERRER 14.56% CONNECTIVITY CHANGE
6.74% SCREEN OFF 13.49% DATA SMS RECEIVED
6.69% USER PRESENT 11.95% AIRPLANE MODE
4.17% CONNECTIVITY CHANGE 10.18% PACKAGE ADDED
2.40% PACKAGE ADDED 4.24% NEW OUTGOING CALL
2.38% IN APP NOTIFY 2.66% USER PRESENT
2.25% SMS RECEIVED 2.14% BATTERY CHANGED
1.43% PHONE STATE 1.72% DEVICE ADMIN ENABLED
0.91% MEDIA BUTTON 1.60% INSTALL REFERRER
0.78% PACKAGE REMOVED 1.50% APPWIDGET UPDATE
0.70% SERVICE STATE 1.43% PHONE STATE
0.65% SCREEN ON 1.40% BATTERY CHANGED ACTION
0.64% MEDIA MOUNTED 1.03% PACKAGE REMOVED
0.61% NEW OUTGOING CALL 0.90% UNINSTALL SHORTCUT
0.60% BATTERY CHANGED 0.90% INSTALL SHORTCUT
0.47% PACKAGE REPLACED 0.90% SIG STR
0.40% DEVICE ADMIN ENABLED 0.88% ACTION POWER CONNECTED
0.36% DEVICE STORAGE LOW 0.70% SCREEN OFF
0.32% STATE CHANGE 0.61% PICK WIFI WORK
0.27% TIME SET 0.51% TIME SET
0.25% WAP PUSH RECEIVED 0.41% WAP PUSH RECEIVED
0.25% ACTION POWER CONNECTED 0.39% SCREEN ON
0.24% MEDIA UNMOUNTED 0.36% BATTERY LOW

TABLE V: Most popular advertisement libraries in goodware
and malware by the percentage of apps in each set.

Goodware Malware

36.76% AdMob (Google) 5.74% AdMob (Google)
5.61% Flurry 3.90% WAPS
4.00% Millenial Media 2.94% Kuogo
2.92% MobClix 2.92% domob
2.72% AdWhirl 2.67% Adwo
1.94% InMobi 2.02% AirPush
1.77% MobFox 1.97% YouMi
0.91% MoPub 1.43% Vpon
0.78% Adlantis 1.27% Wooboo
0.74% Admarvel 1.15% MobWIN
0.67% Smaato 0.91% Millenial Media
0.63% YouMi 0.84% Flurry

TABLE VI: Information most commonly leaked to the network
by goodware and malware by the percentage of apps in each set.

Goodware Malware

12.86% IMEI 39.68% IMEI
1.70% IMSI 25.88% IMSI
1.51% PHONE NUMBER 13.89% PHONE NUMBER
1.12% LOCATION 4.34% ICCID
1.12% LOCATION GPS 1.40% CONTACTS
0.60% ICCID 0.40% PACKAGE
0.08% PACKAGE 0.11% SMS
0.06% CONTACTS 0.11% CALL LOG
0.05% SMS 0.10% LOCATION
0.02% CALL LOG 0.10% LOCATION GPS
0.01% BROWSER 0.07% BROWSER
0.01% CALENDAR 0.00% TAINT CAMERA
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Abstract—We describe our experience gained while exploring
practical security and privacy problems in a real-world, large-
scale social network (i.e., Facebook), and summarize our con-
clusions in a series of “lessons learned”. We first conclude that
it is better to adequately describe the potential ethical concerns
from the very beginning and plan ahead the institutional review
board (IRB) request. Even though sometimes optional, the IRB
approval is a valuable point from the reviewer’s perspective.
Another aspect that needs planning is getting in touch with the
online social network security team, which takes a substantial
amount of time. With their support, “bending the rules” (e.g.,
using scrapers) when the experimental goals require so, is
easier. Clearly, in cases where critical technical vulnerabilities
are found during the research, the general recommendations for
responsible disclosure should be followed. Gaining the audience’s
engagement and trust was essential to the success of our user
study. Participants felt more comfortable when subscribing to our
experiments, and also responsibly reported bugs and glitches. We
did not observe the same behavior in crowd-sourcing workers,
who were instead more interested in obtaining their rewards.
On a related point, our experience suggests that crowd sourcing
should not be used alone: Setting up tasks is more time consuming
than it seems, and researchers must insert some sentinel checks
to ensure that workers are not submitting random answers.

From a logistics point of view, we learned that having at
least a high-level plan of the experiments pays back, especially
when the IRB requires a detailed description of the work and the
data to be collected. However, over planning can be dangerous
because the measurement goals can change dynamically. From
a technical point of view, partially connected to the logistics
remarks, having a complex and large data-gathering and analysis
framework may be counterproductive in terms of set-up and
management overhead. From our experience we suggest to choose
simple technologies that scale up if needed but, more importantly,
can scale down. For example, launching a quick query should be
straightforward, and the frameworks should not impose too much
overhead for formulating it. We conclude with a series of practical
recommendations on how to successfully collect data from online
social networks (e.g., using techniques for network multi presence,
mimicking user behavior, and other crawling “tricks”’) and avoid
abusing the online service, while gathering the data required by
the experiments.

I. INTRODUCTION

Massive user participation has rendered online social net-
works (OSNs) a valuable target for attackers, and a lucrative
platform for deploying various types of attacks, ranging from
spam [1] to personalized phishing campaigns [2]. Ample
research efforts have been dedicated to explore the potential
ways in which OSNs can be exploited and attacked, and
subsequently develop the appropriate defense mechanisms that
will hinder actual incidents.

Research Challenges. Researching the security of online
social networks presents a series of interesting challenges.
On one hand, the large-scale nature of such services requires
efficient and accurate experimentation methodologies as well
as a sturdy infrastructure. Consider that miscreants are known
to capitalize on popular events that are expressed through viral
behavior on OSNs such as Facebook and Twitter. For example,
during the night of the 2012 U.S. presidential election, 31
million Tweets were posted online at a peak rate of 372,452
Tweets per minute [3]. Had researchers wanted to study
and analyze such content in search of SPAM or malware
campaigns, it would have been a daunting task. Keeping up
with the rate of user-generated content, also places significant
burden on the network connection both in terms of bandwidth
as well as latency. Moreover, maintaining such content for
subsequent analysis mandates a large amount of storage space
and processing power. On the other hand, the unique nature of
security research presents both ethical and legal issues. From
the standpoint of the OSN service, a researcher might seem like
an attacker and from the standpoint of a researcher, probing
the service to identify weaknesses might mean producing tools
for the actual attackers. Despite this growing interest, we are
not aware of any systematization nor retrospective work on
OSN research with a focus on system security.

Our Experience. In this paper we present our experiences
from our recent research on Facebook. In our use case, the
goal was to build a system to identify Facebook’s Social
Authentication mechanism characteristics, analyze its behavior
and point out the security weaknesses. Our work has been
published in the proceedings of 2012’s ACSAC [4]. We hereby
present our experiences, and the mishaps we encountered and
solved while interacting with a large-scale OSN service such as
Facebook, with the goal of conducting a user-centered analysis.

We walk through the logistical and technical challenges that
we had to take care of, and provide the reader with a series of
practical recommendations in order to carry out a measurement
experiment in the smoothest way possible. Empirical works on
online social networks are probably the most representative
example of user-centered measurements and, as such, require
time and certain aspects to be taken into account. To this end,
we provide a “meta workflow” that other researchers can adapt
to their needs, in order to avoid mistakes that we committed
when designing and developing our experiments. However,
we also learned that a strict plan could sometime become
counterproductive: We provide practical examples that explain
when and how we needed to revise our plan, and adapt our
measurement infrastructure to changing goals. Moreover, we
discuss the delicate aspects related to terms of service in OSNs,
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Fig. 1. Use case: An automated system that collects data from Facebook and exploit it to attempt to break its face-based social authentication system. The
system operates in four steps. In Step 1 we retrieve the victim’s friend list using his or her UID. Then, in Step 2 (optional), we send befriend requests, so that
we have more photos to extract faces from and build face classifiers in Step 3. In Step 4, given a photo, we query the models to retrieve the corresponding
UID and thus match a name to face. Step 4 takes place in real time while steps 1 through 3 at a previous time.

which often conflict with the goals of the security researcher,
who needs to crawl corner regions of the network.

We summarize our conclusions on each aspect in a series
of “lessons learned”, which provide a starting point for future
research in the same areas, or with similar measurement goals.

In summary, in this paper:

• We analyze the typical stages of large-scale exper-
iments in OSNs and present them as a work flow,
as we argue that the particularities of OSN security
research demand a structured approach, and provide
pointers for identifying non-technical challenges and
requirements. We are not aware of prior work on the
subject.

• We describe the peculiarities of OSN-related experi-
ments, and stress the importance of considering non-
technical issues when designing and deploying exper-
iments. Ethical and legal aspects can greatly affect
the outcome of an IRB protocol request. We identify
the outdated nature of the IRB request procedure,
and argue that it should be revised to reflect the
requirements of current research.

• We discuss the benefits of cloud services for out-
sourcing data analysis in large-scale OSN experi-
ments. We present the trade-offs we faced, and how
a hybrid approach allowed us to conduct our various
experiments efficiently.

II. CASE STUDY

In this section we introduce our use case so as to provide
the necessary context for understanding the various issues
we came across during our research, and the decisions we
had to make. In particular, we briefly describe Facebook’s
Social Authentication (SA) mechanism, and our experimental
methodology and findings while evaluating its security prop-
erties. For an in-depth description, we encourage the reader to
read our work [4].

A. Photo Based Social Authentication

Conceptually, the social authentication mechanism is an
“instantiation” of the two-factor authentication scheme. Two-

factor authentication offers additional security to traditional
single-factor, password-based, approaches. Usually the second
factor is something the user possesses, for example a hardware
token, and needs to prove its physical presence in real-time
during the authentication process. An attacker would have to
steal both the password and the physical token to be able to
impersonate the user and log into the Web service in the future.

In SA the idea is, essentially, to leverage a user’s social
knowledge as the second factor, so as to prevent attackers
from compromising online profiles, after having stolen their
credentials. Facebook’s implementation of the social authenti-
cation, or SA in short, is activated only when certain security
heuristics flag a login attempt as suspicious, for instance
when taking place from a country or computer for the first
time. In that case, right after the standard, password-based
authentication, the user is prompted with a sequence of 7 pages
featuring challenges, where each challenge is comprised of 3
photos of an online friend. For each page, the user must find
the true name of the depicted friend, with the sole help of
6 suggested names, chosen from the user’s social circle. The
user is allowed to fail in 2 challenges, or skip them, but must
correctly identify the depicted people in at least 5 in order to
be granted access. The idea is that nobody but the actual user
will possess the necessary social information to correctly pass
the test.

B. Threat Model

The threat model initially covered all scenarios where the
user’s password had been compromised. However, Kim and
collaborators in [5] showed that users with tightly connected
social graphs, such as a university network on Facebook, share
enough social knowledge to defeat the secrecy assumption
made by Facebook. As such, the threat model was reduced
to attacks made by complete strangers half-way around the
world.

C. Research Goals and Findings

Our research was based on the hypothesis that any stranger
(i.e., anyone not in a user’s online social circle) can acquire
enough knowledge to pass the photo-based challenges. For this,
our system crawls the public portion of a user’s online social
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graph, collects a labeled dataset of photos depicting the user’s
friends, and trains face-recognition algorithms to automatically
recognize faces presented during SA challenges. An overview
of our system is summarized in Figure 1. Our work resulted
in a system able to successfully break Facebook’s SA under
our original hypothesis.

We first implemented a crawler that measures the amount
of sensitive data left publicly accessible by Facebook users.
Our experiments showed that an attacker can obtain access to
sensitive information for at least 42% of a user’s friends that
Facebook uses to generate the SA challenges. Next, we mea-
sured the efficiency of face-recognition algorithms against the
SA mechanism. Using the aforementioned publicly-accessible
information, our attacker trains a classifier and builds accurate
facial models of the victim’s friends. Our findings showed
that by relying solely on publicly-accessible information, an
attacker can automatically solve 22% of the SA tests, and gain
a significant advantage for an additional 56% of the tests.

III. APPROACHING ONLINE SOCIAL NETWORK
RESEARCH

Before researchers begin their work on a social networking
service, they have to make ethical and legal decisions that will
determine the guidelines under which they will have to operate.

A. Ethical Aspects

The first task that researchers must undergo is to consider
the ethical issues that may arise from the type of work they
wish to do. Designing a study or an experiment should take
into consideration its impact on the participants, and the
community in general. For instance, collecting user data, even
when publicly available, may violate the privacy of those
users who might not be aware of the ways their sensitive
information is leaking on the Web. At the same time, even
if users provide their explicit consent for data collection, it is
the researchers’ responsibility to provide assurances regarding
the confidentiality and privacy of that information, a data
retention time frame, as well as information on its secure
disposal. Apart from privacy issues, one needs to consider
how active experiments within social networking services will
be, especially when interaction with actual users is involved
(e.g., through dummy accounts). They must take into account
that they might impact the users and the online service itself.
Overall, researchers need to set a goal of minimizing any
impact, and avoiding any permanent side effects of their
actions.

Responsible Disclosure. A special category is research
carried out for security reasons. For example, in our case
we sought to evaluate the effectiveness of Facebook’s SA
mechanism. Our analysis of identified weaknesses and the doc-
umentation of our methodology could be misused by attackers
to defeat this security mechanism. However, we believe that
attackers might already be studying the weaknesses of SA and
that it is better to point them out first, so as to raise the
bar for the attackers. As a matter of fact, we have already
detailed ways to enhance the security of this mechanism,
and are continuing to explore improved countermeasures, and
hope that our work has motivated other researches to do the
same. It is crucial to improve the security mechanisms of a

service with such a massive user base and amount of personal
information. Note that the weaknesses that we identified were
conceptual rather than technical. In other words, we did not
find an exploitable technical vulnerability, but rather a flawed
design. In case critical technical vulnerabilities are found, the
researchers should follow responsible disclosure guidelines1

and the social network’s policy2.

Moreover, as our goal was to determine the security pro-
vided by Facebook’s SA against someone that has access to a
victim’s Facebook password, we had several options for testing
our hypothesis. One option was to select real Facebook users at
random and utilize dictionaries of common passwords to gain
access, and actually test our experiments in the most realistic
environment possible. Or we could employ lists of known
compromised Facebook accounts available in the Internet
underground. However, considering the ethical nature of such
actions we decided to create, and attack, dummy accounts of
our own. To be able to trigger the SA mechanism we needed
to populate our accounts with friends and, thus, issued friend
requests to random individuals using those accounts. We did
not attack, or otherwise negatively affect those individuals. At
the end of our experiments, we severed our links to them by
un-friending them and deactivated our dummy accounts.

When in Doubt, Simulate. Another example is when
we needed to repeat an experiment to test whether we were
able to break the photo-based authentication. To obtain the
most realistic conditions, we should have chosen to trigger the
authentication mechanism and use our training base to try to
break it, and repeat the experiment any time we needed to
tune our algorithm’s parameters. In addition to slowing down
the experiment dramatically, it would have caused Facebook
to ban our accounts. We had a better choice for performing
an arbitrary number of experiments: We used the millions
of photos in our data store to synthetically generate the
authentication challenges, by randomly selecting an expected
answer (i.e., a user’s name), five wrong answers, and three
random photos each. To the best of our knowledge, Facebook
randomly selected candidate photos based on the likelihood
that they contain a face. Thanks to the availability of an offline
face-detection algorithm we were able to select—and index—
only those photos that contained a face, and use them in our
experiments. This allowed us to perform an arbitrarily large
number of realistic experiments, while preserving the integrity
of our dummy accounts, and avoid possible service abuse.

Lesson learned: Ethical aspects must obviously be
taken into account from the very beginning. Being famil-
iar with, or at least making educated guesses about, the
internals of the OSN web application helps avoiding their
abuse. When feasible, try to replicate the settings offline,
rather than polling/abusing the online service.

B. Institutional review board (IRB)

The role of an IRB is to supervise research involving
human subjects that is carried out by members of that in-
stitution. Its mission is to ensure that researchers’ actions
adhere to the code of ethics, and protect the participants from

1https://www.schneier.com/essays/archives/2007/01/schneier full disclo.
html

2In the case of Facebook: https://www.facebook.com/whitehat
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physical or psychological harm. Traditionally, the focus of
such committees has been biomedical and behavioral research.
Nevertheless, an IRB needs to review all research involving
human subjects and decide whether to allow it, as well as
whether is should be exempt or not from supervision during
its duration.

In our case, researchers at Columbia University are asked
to provide information, in the form of an IRB protocol request,
that seems to be oriented towards traditional forms of research
involving humans in a physical location subject to tangible
stimuli such as a specific substance, device or signal. Among
the information asked to provide are the address of the building
and room the research will take place and whether radiation
or hazardous materials will be involved.

On the other hand, an IRB protocol request is not ori-
ented towards research taking place online so it is up to the
researchers to describe the various parameters in their own
words. For example, the issue of collection of user information,
including personally-identifying information (PII) [6], is not
addressed apart from the case of social-security numbers
(SSN). Besides the guarantees that a researcher should provide
for strictly limiting the data collection to that needed for the
purposes of the research, they should also state the measures
taken to safeguard the privacy of the participants—both against
first and third parties—when such data is stored and processed
for the duration of the research. Moreover, there is no explicit
mandate or procedure to properly dispose of collected data
in the case of electronic information collected online. Also,
the use of cloud services for storage and processing makes
an interesting case of its own as the researchers’ own privacy
policy is tangled with the terms of service and privacy policy
of the cloud services being used. In our case we made
sure to honor such requirements and inform our participants
when cloud services were used. We believe, however, that
as researchers are explicitly instructed on how to handle
biological material, the same should apply in electronic and
online research involving human subjects.

We found that the IRB of Columbia University was knowl-
edgeable and responsive regarding matters of online research.
Nevertheless, we believe that future researchers could benefit
from additional information, instructions and training.

Lesson learned: Having a study approved by the IRB
can be valuable and is generally considered a positive
point by the technical program committee during the review
process.

C. Terms of Service

Social networking services base their operation in the
storage, processing and management of user-provided data. In
an attempt to offer assurances to their users and safeguard their
business model, they shape their terms of service accordingly,
which in certain cases might prove to be counter-intuitive.
For instance, Facebook clearly disapproves [7] accessing its
pages and respective data (even the public portions) when
done in an automated way (i.e., crawling). Large Web search
engines are explicitly white-listed [8] and everybody else must
apply for, and acquire, written permission by Facebook. In
2010, the social networking service did not hesitate to take
legal action against an Internet entrepreneur [9] who collected

publicly-available user data from Facebook and, subsequently,
released an anonymized version for researchers to use. This
was, obviously, a very extreme case, because the entrepreneur
released the collected data, possibly affecting Facebook’s
business model.

Overall, we argue that the crawling of publicly-accessible
data should not be hindered by social networking services as
long as the data collection process does not directly impact
the normal operation of the service. Moreover, researchers
should also be able to collect private user-owned data as long
as the respective users have given their explicit consent. A
very encouraging step towards this direction has been taken by
Twitter, which exposes API calls [10], not only facilitating the
collection of publicly-available user-provided content (i.e., the
tweets), but also offering specific API endpoints that perform
data sampling.

Researcher: The Good, the Bad, the Ugly. A contro-
versial aspect regards when researchers need to “bend the
rules” to carry out their work that could benefit the scientific
community, the users of the social networking service and
even the service itself. For instance, security researchers might
need to evaluate the behavior of users as well as privacy-
preserving measures taken by the social networking service
so as to propose improvements. This could require creating
dummy or test accounts for interacting with the service and its
users. Such actions are explicitly forbidden under Facebook’s
terms of service. However, real-world attackers are not bound
by the terms of service. If researchers do not bend the rules, the
security and privacy of the social networking services might
go untested and vulnerabilities might remain hidden from the
general community while being known to potential attackers.
We argue that, in such cases, deviating from the terms of
service is justified as long as the service itself or the users
do not suffer irrevocable damage from such actions. In other
words, in the case of dummy accounts, as long as they are
destroyed by the end of the research project and any data
collected or inflicted side effects are reversed, all sides are
benefited. While conducting another research, we strove to
obtain Facebook’s consensus before proceeding, but it required
a substantial amount of time that would have delayed our
results. So, even though we were aware that we did not entirely
adhere to the terms of service, it seemed that no better option
existed—except, of course, that of not conducting our research
at all.

Lesson learned: Strive to get in touch with the OSN
security team, but try to plan in advance. Be aware of
what terms of services you are not adhering to, and include
detailed recommendations alongside the discovered security
vulnerabilities.

IV. HUMAN SUBJECTS

Having pointed out the security inefficiencies of Face-
book’s SA, we are continuing with research to improve it. For
that matter, we carried out a user study to receive feedback
from human participants on our efforts to enhance the quality
of this authentication mechanism. Our results can be found
here [11]. Since we were evaluating our idea of a modified,
photo-based authentication scheme for something as popular
as a social networking service, we opted for a diverse set
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of participants that could not be found within an academic
institution. Therefore, we explored reaching human subjects
through crowd-sourcing services, namely Amazon Mechanical
Turk (AMT)3 and ResearchMatch 4.

Initially we designed the environment of our study and
decided on its parameters. We felt it was important to create
a respectable and trustworthy presence of our study online, in
order to invite strangers to participate in it. For this reason we
setup a site informing of our research5. In the home page, we
adopted a layout that quickly and clearly conveys important
information about our study. We identify ourselves to visitors
of the page, briefly describe the purpose of the study and what
information potential participants would have to release to us
for the duration of the study. Finally we describe our privacy
policy and include a point of contact.

Next, we developed a Facebook application to facilitate
the efficient interaction between the experiments driving our
study and the participants. We opted for a Facebook application
because, first of all, they are deployed within a sandbox run
by Facebook itself and are, thus, governed by a series of
permissions that clearly state and, subsequently, enforce their
capabilities and access to user data. This is important, as it
inspires trust in users. Secondly, as we are using Facebook’s
SA as an example case for improving this type of security
mechanism, it was important to integrate our work as close
to the mechanics of the service itself as possible. Finally, as
we require participants to grant us access to some of the
data in their profile (e.g., their social graph), a Facebook
application enables direct access. This is also in accordance
with our efforts to respect user privacy and minimize collection
of potentially sensitive information. In other words, having
direct access to Facebook rather than having users upload
that information to our own infrastructure means we are able
to minimize the amount of a user’s information kept within
our infrastructure and operate on a best-effort basis to utilize
pointers towards the actual Facebook source.

Once our study was ready to commence, we began the
process of inviting Facebook users to participate. Through this
process we gained experience on human subject involvement
in OSN research, and hereby present the obstacles and issues
that arose, and how we chose to deal with them.

Lesson learned: Through a respectable website that
transparently informs users about our ongoing research we
were able to “engage” the community and gain trust among
the participants.

A. Give good user incentives

To attract human subjects to participate in the experiments,
researchers need to provide incentives. One possible way to
entice users is to setup the experiment in such a way that it
will appear as a game. Our first attempt was to organize the
study as a series of challenges and provide users with a score,
depending on how many challenges they solved correctly, and
the ability to share that score with their Facebook friends.
We thought that this could create a game-like feeling and

3http://mturk.com
4http://researchmatch.org
5http://resoauth.necst.it/

competitiveness that would attract more users, and provide
the incentives for completing multiple tests. This, however,
was not the case, as most users found certain parts of our
study tedious and stopped after a couple completed challenges.
Ideally, the game-like approach would make the participation
fun but it turns out that the received satisfaction from solving
challenges related to their online friends was not enough to
justify the effort required. Therefore, we investigated other
incentives to attract a large set of users. The alternative is
to provide users with monetary rewards for participating. A
method for gaining access to a large set of potential test
subjects is through a crowd-sourcing platform. Such platforms,
like the Amazon Mechanical Turk service and ResearchMatch,
allow one to express his interest for participants or “workers”
(or “turks”) for a specific task and it is up to the users to
contact the initiator of the task. We did not consider active
advertisement campaigns (e.g., via email), as that may give
the wrong first impression.

B. Crowd-sourcing 6= Easy workforce

Our first attempt was to leverage the Amazon Mechan-
ical Turk (AMT) platform, where users receive monetary
compensation for completing tasks. We created a task where
users were asked to install our Facebook application and
participate in the study. However, our task was rejected by
Amazon, as it violated their terms of service due to the
following reasons: a) we asked for the participants’ (Facebook)
identity, b) we required them to register at another website
(the site we set up for the study), and c) we required them
to install an application. AMT is oriented towards finding
humans to carry out simple data processing jobs (e.g., image
classification). They could be asked to use a search engine to
locate some information, transcribe audio to text or answer
statistics-gathering questionnaires. Even though we argue that
we were very careful and responsible when designing our study
and took measures to ensure the security and privacy of the
participants, AMT’s automated screening process was unable
to realize that and, therefore, did not allow us to proceed.
Even though research has been powered by AMT even in
security-related projects [12], the service is geared towards
more restricted tasks.

An encouraging example is that of ResearchMatch, which
pairs researchers with potential participants. Researchers de-
scribe the type of study they are running as well as the profile
of suitable participants. Users of the service identify interesting
cases and apply to join. Unlike the AMT model, monetary
compensation is not a part of the process. While users are
called volunteers, this does not mean researchers cannot in-
centivize with monetary compensation. This, however, takes
place outside the service. The site’s orientation towards the
research community is evident by the fact that it requires
a valid IRB protocol for any initiated study, and identifies
researchers by their affiliation with selected institutions. At the
moment it has a little over 30,000 volunteers [13] compared
to the over 500,000 workers of AMT [14]. Nevertheless,
its environment seems significantly more research-friendly,
although it is currently limited to the population of the United
States.

In order to take advantage of AMT, we ended up modifying
the type of tasks. Instead of requiring the workers to identify
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their friends, we asked them to recognize well-known people
(e.g., celebrities). This allowed us to remove the requirement of
installing an application and asking for the workers’ identity.
However, the downside was that we had to had to translate
a complex task into a simple image-classification task, which
required additional time. Alongside this large-scale study con-
ducted thanks to AMT, we set up a smaller-scale experiment
in a controlled environment, which we used as a pilot.

Lesson learned: The anecdotal belief that crowd-
sourcing services allow researchers to carry out any type of
batch work turned out to be misleading in our case. Once
again, having a backup plan (i.e., standalone website and
network of contacts) allowed us to finish our study.

C. Representativeness of Human Subjects Set

Another issue that arises when outsourcing tasks to human
test subjects, is the representativeness of the set (i.e., how they
will perform compared to the general population). A biased
selection of test subjects might skew the experimental results,
and this should be taken into account when designing the
experiment. Although this aspect must be taken into account,
there is no recipe for ensuring good representativeness, apart
from ensuring that each task is solved by many different
workers. Platforms such as AMT allow, to some extent, to
select workers based on their reputation (e.g., percentage of
correctly solved tasks), but there is currently no support to
enforce uniform geographic or demographic distributions of
tasks. We agree with previous studies that suggested prudent
practices when using crowd-sourcing services [15].

D. Inspecting User Data

During the implementation process of our custom-built face
recognition software, we manually inspected user photos for
tweaking our parameter selection as well as for debugging
purposes. While this might raise ethical concerns as it entails
inspecting personal and potentially-private information, this is
often unavoidable in the context of research experimentation.
Before installing our application, users were informed that
their data may be inspected by researchers.

E. Securing User Data

An important factor when storing user data, even if it is
only for the duration of the experiments, is to secure it. Typical
procedure includes anonymizing the data. In our case, this was
not possible because the stored information (e.g., User ID,
photo URLs) was used at runtime by our system. Nonetheless,
to avoid the leakage of potentially private information, in [4]
we conducted the majority of our experiments using publicly-
available information and photos. In the cases where we
collected photos from real SA tests, which could be private,
we deleted all the data after we finished our experiments.

To minimize the chances of user data being obtained by
malicious third parties, all data was stored on a single machine
located in the proximity of the NECSTLab at Politecnico di
Milano, and could only be accessed by a user account created
specifically for conducting our experiments. No external (both
from other users or from other machines) access to data was
allowed, and access to the user account was restricted with our

SSH public keys. Also, no files or photos were ever moved
from our machine to portable drives or through the network.

V. WORKFLOW VS. FLEXIBILITY

On the one hand, in measurement experiments, having a
workflow is essential. On the other hand, every measurement
must be treated differently. There is no recipe for an experi-
mental workflow, and we are by no means proposing one.

A. Flexibility Pays Back

One of the most painful lessons that we learned is that
flexibility is paramount: being able to quickly re-design an
analysis task was essential for us to probe and measure. A
rigid workflow would not have helped. Nevertheless, some
high-level procedures can be depicted, in the hope that other
researchers find it a good starting point. Honestly, we were able
to draw Figure 2 only once the work was completed by 60–
70%: Do not expect to meet with your co-authors and prepare
the workflow for the next 3–6 months of measurement. The
diagram shows how the design and implementation phases are
decomposed into tasks. From our experience, and from the
examination of previous work on OSNs, we believe that the
resulting workflow is relatively generic, and can be used as a
guideline by researchers first approaching this subject.

We divide the high-level workflow into two phases. In
the Design Phase we sketched a high-level outline of the
experiments. In this phase, it is very useful to elicit the phases
starting from (1) the data that needs to be collected and (2) the
questions that need an answer. In this phase, the researchers
must strive to identify the details of their experiments and
data, so as to identify the most important ethical and legal
issues that may arise in the future. In the Implementation
Phase, the researchers have already created an outline of their
experiments, and are required to continue with the detailed
design and implementation of their experiments, which is
driven by the availability of resources and existing tools.
Again, flexibility always pays back. So, our advice is to keep
the plan as an indication, and modify it whenever the results
require so.

B. Having a Plan Pays Back

Even if some degree of flexibility is important, measure-
ments with no plans at all do not go very far. A concrete
case is when collecting user data or conducting experiments
with human subjects. Usually, an institutional review board
(IRB) must approve such experiments and, without a plan,
there is no formal way to talk to an IRB. The IRB protocol
request must contain a thorough explanation of the type of
user data that will be collected as well as the nature of
the experiments involving human test subjects that will take
place. Therefore, researchers have to undergo a preparation
phase where experiments are designed in detail and their goals
are clearly stated. This deviates from other types of security
research, such as exploring methods of misusing a system [16]
or searching for vulnerabilities, that may follow more of
a “hit and miss” approach. As such, after conceptualizing
the experiment and clarifying the desirable end results, both
technical and non-technical issues have to be considered.
During the design of the data collection and analysis process,
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Fig. 2. Overview of the process followed when designing and implementing our research work on the security of Facebook’s Social Authentication mechanism.

researchers must also identify the ethical and legal issues that
arise. The handling of user data also mandates the design of
the procedures that safeguard the data. When these processes
have been designed in detail, the researchers can submit the
information, and request an approval. If the IRB denies the
request, the researchers will have to identify the reasons that
led to this decision and re-design the experiments until they
are approved.

C. Avoid Over Planning

If the IRB committee approves the request, the implemen-
tation phase begins. The first step is to identify the resources at
the researchers’ disposal. Resource availability is fundamental
during this process, as it greatly influences many of the im-
plementation decisions that will be made. Reviewing existing
solutions and incorporating such systems can greatly reduce
the implementation overhead. For instance, when implement-
ing the data collection system, one may leverage distributed
crawlers such as crawl-e6, which supports crawling across
multiple threads and machines. On the other hand, when
resource availability is minimal, a centralized crawler with a
custom, fine-grained allocation of the available resources may
be a better option. As an example, we present the details of
our crawler implementation in Section VII.

In regards to the data-analysis procedure, one of our goals
was to demonstrate the severity of the security vulnerabilities
of the SA mechanism, and the feasibility of our attack. In
light of that, we wanted to show how the attack could be
accomplished using off-the-shelf face-recognition algorithms
as well as free cloud services, which are at any attacker’s
disposal. This affected the implementation phase of our data-
analysis process, where we implemented a custom face recog-
nition solution using an existing framework and also integrated
a cloud based solution. We saw in practice, the importance
of leveraging existing solutions that can provide much-needed
functionality and, as it happened in our case, better results.

Lesson learned: A high-level plan of the measurement
experiments is necessary when presenting formal approvals
or data-access requests. However, avoid over-planning and
be ready to adapt quickly.

6http://code.google.com/p/crawl-e/

VI. DESIGN PHASE

In this section we detail the decisions when devising the
design of the experiments. In our case, we needed to traverse
public parts of Facebook’s social graph, such that we could
collect photos of users which we had previously befriended us-
ing a series of dummy accounts (see Section VII-B and VII-C
for practical examples on how to create and maintain dummy
accounts). We then needed to analyze the photos to produce
a dataset of labeled faces, which we would supply to the face
recognition algorithm to build models.

The aforementioned dummy accounts were treated as the
victim accounts in our experimental scenario, where we as-
sumed the role of the attacker. In this scenario, the attacker
knows the password for the accounts, but lacks the social
information to solve the SA challenges presented by Facebook.
As a matter of fact, we did actually lack the social information
even though we owned the victim accounts, as the friends were
random strangers that we had befriended.

A. Data Storage: Simplicity Wins

When the experiments mandate the management of large—
or, simply, unpredictably large—amounts of data, the selection
of the appropriate type of database to be used is driven by two
factors: scalability (both up and down) and flexibility. Scaling
down is often under-estimated, although it is a crucial factor.
For example, large and complex big-data frameworks pay back
in term of scalability (up), but have a very steep setup and
learning curve, such that a small modification is impractical.

Scaling Down. Scaling Up. We decided to implement our
system upon a lightweight, non-relational database such as
MongoDB or CouchDB. Relational databases such as MySQL
and SQLite are suitable for small-scale pilots, but are not
optimized for handling non-transactional (e.g., purely tabular),
big-data repositories with evolving schema (e.g., new attributes
or relationships). In addition, OSNs are well represented with
graphs data structures, which do not map (natively) onto
relational data structures. Last, and most importantly, queries
in non-relational databases can scale up easily, if required,
thanks to MapReduce. MapReduce has been extensively used
in many researches with great benefits (e.g., [17]).

Normalization is Evil. During the phase of data modeling,
one must take into account that the principal difference from
relational, SQL-like databases is the ability to store and retrieve
great quantities of data, and not the relationships between
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the elements. Thus, JOIN operations are not supported, and
data needs to be de-normalized using explicit references be-
tween documents for emulating relationships. Even though
non-relational databases cannot, necessarily, give full ACID
guarantees, at the same time they do offer a distributed, fault-
tolerant architecture and the possibility to scale horizontally.
These characteristics fit the prerequisites that stem from man-
aging large amounts of data, where performance and real-time
responses are more important than consistency.

Forget About Data Consistency. Apart from being suit-
able for the management of large volumes of data, non-
relational databases are also very flexible as and there is no
restriction for the mandatory application of a fixed schema.
This results in the ability to change the structure of the
collected data even after an experiment has started, without
the need of rebuilding the entire database to make the old data
consistent with the new structure. Most of the time, ensuring
data consistency in an always-running experiment can be as
easy and non-disruptive as adding proper “if” conditions in
data processing routines.

ORMs are Evil: The Model is The Data. In practice,
among all non-relational databases, we chose MongoDB7, a
document-oriented database, where data is handled in col-
lections of documents. To draw a comparison between this
concept and that of the SQL style, we could say that collections
are like tables, and documents can be considered records.
While every record in a table has the same sequence of
fields, documents in a collection may have fields that are
completely different. Additionally, the format of the responses
(JSON) returned from the services in our experiments, per-
fectly matched the native data type of dictionaries in Python.
Most importantly, having a data structure and model that maps
directly in the chosen programming language is crucial because
it removes the need for any object-relation or object-document
mapping layer (ORM), which is often the source of bugs or
bottlenecks. In addition, JSON is the data-exchange format
adopted by many web-service APIs (including Facebook’s).
Also, in cases of multiple institutions collaborating on the
same project, MongoDB offers two methods of cooperation:
replication and sharding. The first one occurs through groups
of servers, known as replica sets, and ensures redundancy,
backup, and automatic failover. The latter distributes each
database across a cluster of machines.

Lesson Learned: Lightweight, flexible data-storage
engines that easily scale both up and down, with low
setup cost, pay back if compared to complex, big-data
frameworks.

B. File Storage

The next design decision was about the type of file storage
to be used. The available options in our case were a typical
filesystem versus an embedded storage (e.g., GridFS), a system
for storing an unlimited number of arbitrarily-large files di-
rectly into our data storage (i.e., MongoDB). The machine we
chose for the experiments was already equipped with an ext3
formatted drive. The problem, however, is that the maximum
number of i-nodes per directory is 32,000 in ext3, and that
could pose serious limitations on the data we were about to

7http://www.mongodb.org

gather and its organization on disk. Even though this limitation
can be overcome using an ext4 filesystem or modifying some
internal parameters by rebuilding the ext3 filesystem, this was
not an optimal choice because folder indexing would have
taken a considerably large time when the folder was accessed.
While caching would have surely reduced this overhead, given
the amount of data to be saved in files, it would not have solved
the problem completely. Moreover, having a separate location
for the files, creates an additional burden when setting up
backup procedures. Therefore, we decided to rely on GridFS,
which also allowed to easily reallocate the underlying database
on a new, larger drive in case more space was needed. GridFS
works by breaking large files into multiple chunks: It saves the
chunks in one collection (fs.chunks) and metadata about
the file in another collection (fs.files). When a query for
a file is submitted, GridFS queries the chunk collections and
returns the file one piece at a time.

In conclusion, although a filesystem can be seen as the
simplest and fastest way, GridFS presents other advantages
as well: data replication facilitates load balancing among
distributed servers, millions of files can be co-located in a
single logical directory without any performance impact and
it has increased portability as file management is independent
of the application technologies.

Lesson learned: A file-storage solution integrated in
the data-storage engine ensured zero setup time and high
reliability, and avoids duplicating and maintaining multiple
copies of the meta data (i.e., filesystem and data store).

C. Develop vs. Offload

When designing our face-recognition experiments, we
identified two type of experiments that we needed to conduct.
The first one demanded a more versatile approach towards
the selection of algorithm parameters, while the second one
was more demanding in terms of face-recognition accuracy.
As such, we ended up building a custom solution as well as
relying on an existing cloud-based service. On one hand, we
did not want to become experts in another field of research.
On the other hand, we needed to dig into the implementation
details in order to modify some parameters. Given the level of
maturity reached by face-detection and recognition technolo-
gies, and the availability of open-source libraries, we opted for
investing some time to get to know the essential details, for
understanding the consequences of our choices. However, we
prepared a backup solution in case of unsatisfactory results.

Custom Solutions: Becoming Experts. The major advan-
tage of a custom solution is the versatility in parameter tuning,
as every aspect of the algorithm can be rigorously tested
with different values. This was very important for specific
experiments where we needed to measure the correlation
between the size of the training dataset (i.e., number of
faces), and the accuracy in recognizing a face. Furthermore,
a custom solution allows to conduct multiple offline tests
without incurring any limitations from the service provider.
Finally, no network latency is present, which greatly affects
the experiments’ duration when dealing with large amounts of
data.

Nonetheless, a custom solution also presents some dis-
advantages. First and foremost, it takes time and effort to
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refine it so as to be comparable to state-of-the-art systems.
Specifically, the custom solution was effective when simulating
a scenario of an attacker that has obtained a fairly large set of
photos by infiltrating the victim’s social circle with a dummy
account. However, in the scenario of an attacker that only relies
on a small amount of publicly-available data, the accuracy
of our custom solution was not as satisfactory. For this set
of experiments, we needed a more accurate process, and
explored the possibility of employing a cloud-based service
that provides a more accurate face detection algorithm. Also,
the computational power requirements are not negligible, as
these algorithms are computationally intensive and have long
execution times on commodity machines.

Cloud-based Services: Backup Option. Finding a backup
option was very easy in our case, thanks to the availability of
publicly accessible APIs for face detection and recognition.
Ironically, the company offering the API of our choice, face.
com, was acquired by Facebook itself, causing some delays to
our experiments. However, API directories such as Mashape 8

allowed us access to alternative, bleeding-edge technology.

The advantage of a state-of-the-art solution is the far
greater accuracy compared to a custom solution. Develop-
ment of the face-recognition system is effectively being out-
sourced to the service, which offers a production-ready tool
for researchers to use—although, as mentioned, with limited
tweaking options. In terms of available resources, depending
on the service and its usual load, researchers may be able to
significantly increase their processing capabilities as opposed
to utilizing only their local means. By building upon an
existing service, no development time is needed for designing
and implementing an algorithm that will be far less accurate
(unless developed by computer-vision experts), and can be
better allocated on other core tasks. Another advantage of
a cloud-based solution is that the REST constraints, when
present, ensures good scalability.

The most limiting disadvantage of using an existing ser-
vice, is the restriction of API usage. As the number of API
requests per hour is limited, conducting a large number of
experiments will last longer than using a custom solution
where an infinite number of experiments can be conducted
without any restrictions.

Lesson learned: Become familiar with the essential
aspects of technologies borrowed from other research areas,
and use cloud-based services only if not planning to repeat
your experiments in the future, as the services may change
or, worse, be shut down at some point.

VII. IMPLEMENTATION PHASE

This section describes the practical aspects that we had
to deal with during the implementation of our measurement
study.

A. Crawling Online Social Networks

One of the most important aspects of research in OSNs is
the collection of data. The massive user base mandates the
retrieval of large amounts of data that will consist a large

8Mashape: https://www.mashape.com/search?query=face+detection

enough sample to accurately reflect the various properties of
the network. As such, the implementation of the crawler was
integral to our experimental process.

Scraping vs. API. The first dilemma we encountered was
to decide whether our crawler would use Facebook’s public
APIs to collect the information we needed, or if we would
build an entirely custom solution that did not rely on the API.
Our first concern was whether a strict rate limit applies for the
API usage. However, Facebook allows 100 million API calls
per day 9, which is large enough for our intended experiments.

However, for our experiments we wanted to collect the data
in the manner of an attacker, who collects any data left publicly
available by Facebook users. We were aware that we should
have avoided requests at high rates: Indeed, our choice was not
dictated by the need of faster crawling speed, but simply of
availability of certain segments of the social graph. Therefore,
we implemented our solution so as to mimic the behavior of
a “normal” user browsing the website. Thus, for every user,
we retrieved the actual page that contains the list of friends,
followed by the albums and photos. The entire solution was
implemented in Python and every single web request was
issued through the urllib2 library, which impersonated the
HTTP User Agent of a popular Web browser.

Think Asynchronously. The main problem with our tool
was that some steps in the crawling procedures (i.e., album
and photo retrieval) were much slower than others, which
resulted in them becoming a severe bottleneck of the system.
To overcome this obstacle, we built our crawler in a completely
modular and asynchronous fashion. We built four standalone
modules, each consuming data from an input queue and
inserting tasks in an output queue that was in turn processed by
the following component or saved into the database. Modern
programming languages or libraries such as Akka10 or Pykka11

encourage this practice, and allow the developers to abstract
the tedious low-level details of event-based or reactive-based
programming.

The first module was the Friend Collector. It took a list of
user IDs (UIDs) as input and browsed the Facebook profile of
each one. It retrieved all the data of the user’s contacts (name
and UID) using regular expressions created specifically for that
page’s structure. If the number of friends was too large and
they did not fit on one page, the module performed multiple
requests (just like a browser would have done) to get all of
them in multiple passes. Every bit of information was saved
into our database and marked as non-crawled; at the same time
the new UIDs were put in the input queue, so that they would
eventually be processed and their friends would be retrieved
as well. At the end of this step the initial UID was placed in
the output queue, ready to be handled by the other modules.

The second module was the Album Collector. Each UID
in the input queue was used to reconstruct the URLs of their
photo album pages, which were subsequently scraped, and the
exact URLs of all the albums were saved into the database and
put in the output queue. The user with the respective UID was
then marked as crawled.

9https://developers.facebook.com/policy/
10http://akka.io
11http://www.pykka.org
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This same structure was used by the Photo Info Collector.
It took as input the queue of album URLs and crawled them
one by one, saving into the database the real URL of the photo
as well as all the tags each photo contained (coordinates and
related UID) and placed the URLs in an output queue.

The last module was the Photo Downloader, which down-
loaded every image it found on its input queue and saved it
into the database using the MD5 hash as the key.

Once we started the crawling procedure we understood two
key factors. First, this crawling process was much faster than
relying on the public APIs (although overcoming the speed
limits was not our goal). Second, it was crucial to follow
a pipeline design and also effectively distribute resources
among the modules, as there was no way we could efficiently
retrieve all the data following a sequential process of each
user. Overcoming this issue was not trivial. In our initial
experiments, our system was acquiring user information for
a massive amount of users, while the number of downloaded
albums and photos was, of course, significantly smaller. That
resulted in our database being filled with potential targets
for which we did not have any useful information for our
experiments (i.e., photos and tags). For this reason we created
an entire web application to keep the single queues monitored
and be able to modify the behavior of the single modules at
runtime: We could change the number of threads they used,
change the request rate or even start and stop them at will,
so as to de-allocate resources when necessary. Having a way
to continuously monitor the experiments was essential. After
a couple weeks of fine-tuning, we ended up putting as few
resources as possible on the Friend Collector allocating no
more than one thread and using a low request rate, while the
greatest part of the resources was assigned to the downloading
of album and photo information, with up to 32 threads per
module.

Lesson learned: Web service APIs are not always the
fastest option to retrieve data, although abusing of screen
scraping may be against the terms of service. Another
crucial aspect for achieving an “always-running experi-
ment”: When measuring, having fresh data and receiving
notifications when something changes or goes wrong is
essential.

B. Mimicking User Behavior

The major asset of an OSN is the vast amount of data
that OSNs have acquired. Consequently, they deploy various
mechanisms for detecting and preventing automated crawlers
from collecting that data. As aforementioned, during our
experiments we conducted various actions on Facebook, such
as creating test profiles, crawling the network to obtain friend
lists and photo information (URLs and tags), and download-
ing photos. As these actions can lead to the account being
suspended, any good crawling system should incorporate mea-
sures to avoid triggering such mechanisms. A very important
measure is to refrain from “flooding” the OSN with a large
amount of requests in short periods of time. In addition, by
configuring the crawler to conduct other (automated) actions
that resemble the behavior of a human user, we were able to
perform our crawling experiments with a stealthier approach
and avoid triggering the security mechanisms in most cases—
triggering them occasionally is unavoidable. Specifically, we

had a component that logged in as our dummy accounts, and
mimicked user actions such as “liking” posts of other users
and posting trivial status updates.

C. Network Multi Presence

During our experiments, we needed a mechanism for trig-
gering Facebook’s SA mechanism. During manual inspection
we found that the mechanism was triggered when logging in
from geographical locations that had not been associated with
the account in the past (i.e., from an IP address belonging to
a different country). To add this functionality to our system,
we resorted to ToR [18]. By enabling our system to access
Facebook through the ToR network, we were able to auto-
matically trigger the SA mechanism. Unfortunately, after a
number of logins from a specific location, Facebook stopped
triggering the mechanism. However, to bypass that restriction
we periodically changed the ToR circuits. This demonstrates
that the ToR network can be effectively used for experiments
that don’t relate to privacy matters, but require a virtual
presence at dispersed geographical locations. The downside
when using ToR is that the bandwidth is reduced substantially.
This factor should be accounted for when planning for the time
needed to complete experiments, or by subscribing to VPN
services.

D. Data-processing Software

The face-recognition software was the core component of
our data analysis phase. As such, we had designed various
experiments for evaluating the efficiency of our attack, and
exploring whether it poses a realistic threat. We built a custom
solution, which presented the advantage of versatility as we
could fine tune all algorithm parameters. In addition, as this
solution lacked the accuracy of state-of-the-art solutions, we
also resorted to cloud based solutions, with higher accuracy.
Similar design choices hold for other data-processing tasks,
given the wide variety of services12 that provide tempting
opportunities for offloading the implementation.

Using existing systems can greatly reduce implementation
time and yield better results. If they are not modifiable (as
with cloud-based services) one can resort to hybrid solutions
of existing and custom-built components. Depending on each
experiment requirements, appropriate components can be used.

Custom Solution. In our case, we used a face-detection
classifier part of the OpenCV13 toolkit. Even though there are
plenty of face-detection techniques available in the literature,
which are more accurate than those implemented in OpenCV,
our goal was to demonstrate that face-based social authenti-
cation offered only a weak protection. Even with simple, off-
the-shelf solutions, an adversary can implement an automated
attack that breaks it.

Existing Cloud-based Service. We investigated whether
we could employ advanced face-recognition software offered
as a cloud service. We selected face.com, which offered a
face-recognition platform that allowed developers to build their
own applications. The service exposed an API through which
developers could supply a set of photos to use as training set,

12E.g., https://www.mashape.com/, programmableweb.com/apis/directory
13http://opencv.org/
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and then query the service with new unknown photos for the
recognition of individuals. The service allowed developers to
use up to two different sets of training data, referred to as
“namespaces”. Each set could hold up to 1,000 users, and we
found no restriction on the number of photos that could be
used to train a user. A restriction was set on API usage, with
5,000 requests allowed per hour.

One major downside in using face.com was that the service
was discontinued when Facebook acquired the company. Un-
fortunately, this happened while we were working on a follow-
up experiment, which was postponed until we found alternative
cloud-based, face-recognition APIs.

VIII. RELATED WORK

This paper is a retrospective view on our previous and
current research. For similar work, we refer the reader to
systematization-of-knowledge (SoK) papers. Our work is also
orthogonally related to previous research on privacy in OSNs
and, partially, to crowd sourcing.

SoK and Experience Papers. Retrospective and sys-
tematization studies are becoming popular in the computer-
science research community. We believe that this type of
publications, which provide the reader with more than a mere
survey, are of paramount importance in the field of system
security, because they set the ground for good and prudent
experimentation practices. Notable examples of retrospective
studies include, for instance [19] or [20]. Notable examples of
recent systematization efforts include Rossow’s paper on how
to design malware experiments [21], or Zhou’s work on consol-
idating the common characteristics of Android malware [22].
Also, specific conference tracks (e.g., in IEEE Symposium on
Security and Privacy) encourage the submission of so-called
systematization-of-knowledge papers.

As briefly overviewed in the remainder of this section,
researchers have conducted their studies by focusing on some
of the aspects that we systematize in this paper. We are not
aware, however, of any systematization or retrospective work
on online social networks research with a focus on system
security.

Mimicking User Behavior. Stringhini et al. [1] analyzed
how spammers who target social networking sites operate.
They created a set of fake, realistic-looking “honey profiles”
which passively waited for friend requests from other accounts.
The intuition behind this approach was that once the friendship
request from a spammer had been accepted, the fake profile
would start receiving messages from the spammer directly in
his own feed. The authors analyzed some parameters to devise
heuristics that could detect anomalies in the behavior of users
who contacted the fake profiles while demonstrating some type
of mis-behaviour. Even though this approach of populating
fake accounts with friends was effective in this case where
the goal was to befriend spammers, our experiments called
for befriending legitimate users. Thus, we followed an active
approach of sending friend requests to other accounts.

[23] piggybacked on existing functionality of OSNs, and
leveraged human social behavior to augment the efficiency of
their research. Instead of directly issuing friend requests to
Facebook users, they simply visited their profiles and took

advantage of the fact that Facebook subsequently presented
the fake accounts as recommended connections to those users.
A large fraction of those users would issue friend requests
back to the fake accounts, thereby allowing the researchers
to operate in a stealthy manner and quickly establish links to
random users.

Security Analysis of OSNs. In two similar studies, Polakis
et al. [24] and Balduzzi et al. [25] demonstrated how existing
functionality of an online social service can be misused for
actions other than those intended for. Specifically, they used
the search utilities of social networking sites as an oracle; an
attacker can search for an email address, and if a user profile
has been registered with that address, the profile is returned.
This process allows an attacker to map email addresses to
social profiles. Kontaxis et al. [26] also used the search func-
tionality of social-networking services, this time for accessing
the social graph indexes which are computed by the service.
This enabled the efficient identification of potentially cloned
profiles within or across OSNs. A more naı̈ve approach would
require extensively crawling the social graph to acquire the
same information.

Network Multi Presence. Researchers frequently need to
perform network experiments that require multiple and dis-
tributed vantage points. Apart from us, other researchers have
utilized Tor [18] as well for such experiments. Antoniades et
al. [27] carried out distributed network measurements through
its geographically disperse topology. By explicitly selecting
and routing their traffic through select overlay nodes they
evaluated replication strategies of content delivery networks
and investigated network neutrality violations through port
blocking and traffic shaping. Alicherry et al. [28], in an effort
to combat man-in-the-middle attacks, validated self-signed
SSL certificates and host keys by fetching them from the
respective end host through multiple alternate paths realized
by distinct exit nodes.

Crowd-sourcing Platforms. Wang at al. [29] conducted a
series of online interviews and surveys that investigated the
types of posts which Facebook users regretted having shared.
During the survey the users were asked what and why did they
regret about some of posts they made, as well as what the
consequences caused by these posts were. Survey participants
were recruited using the AMT service.

Privacy Implications of Face Recognition. Acquisti et
al. [30] investigated the feasibility of combining publicly
available OSN data with off-the-shelf face-recognition tech-
nology, so as to link online (and potentially sensitive) data
to someone’s face in the offline world. Three experiments
were conducted. In the first experiment they mined publicly-
available images from Facebook profiles and attempted to
map them to user profiles on one of the most popular dating
sites in the United States. In the second experiment they used
publicly-available images from a Facebook college network
to identify students walking around the campus of a North-
American academic institution. In the third experiment they
inferred personal information from a subject’s OSN profile in
real time, after recognizing her face through an application
installed on a common mobile phone. Additional personal
information was then found (or inferred through data mining)
online, and displayed on the phone.
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IX. CONCLUSIVE REMARKS

Comprehensive measurement and data-analysis work is
very difficult to achieve and time consuming, especially if
conducted from the users’ perspective. For example, Maggi
et al. in [31] wanted to measure how short URLs are used
and perceived by the users. The study required 2 years to
complete, and more than 6 months just to have enough users
spontaneously subscribe (non-spontaneous subscriptions could
bias the measurement).

Empirical works on online social networks are probably the
most representative example of user-centered measurements
and, as such, require time and certain aspects to be considered.

We believe that this retrospective view on our work will
be useful to other researchers working on similar problems.
Also, we hope that this will inspire follow-up work and provide
future extensions containing more insights and lessons learned
while conducting large-scale security or privacy measurements
on real Web services.
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Abstract—The Secure Socket Layer (SSL) and Transport
Layer Security (TLS) are the most widely deployed security
protocols used in systems required to secure information such
as online banking. In this paper, we propose three handshake-
information-based methods for classifying SSL/TLS servers in
terms of security: (1) Distinguished Names-based, (2) proto-
col version and encryption algorithm-based, and (3) combined
vulnerability score-based methods. We also classified real-world
SSL/TLS servers, active during July 2010 to May 2011, using
the proposed methods. Finally, we propose 45 features, deemed
relevant to security assessment, for future SSL/TLS data collec-
tion. The classification results showed that servers had bimodal
distribution, with mostly good and bad levels of security. The
results also showed that the majority of the SSL/TLS servers
had seemingly risky certificates, and used both risky protocol
versions and encryption algorithms.

I. INTRODUCTION

In today’s Internet, the Secure Socket Layer (SSL) and
Transport Layer Security (TLS) are the most widely deployed
security protocols used when a client and a server desire to
securely exchange data over the Internet. SSL/TLS is used
in several ways. Online businesses (e.g., online retails) use
SSL/TLS to build customers’ confidence that their sensitive in-
formation will not be compromised during online transactions.
Enterprise mail servers utilize SSL/TLS to encrypt messages
being transmitted over the Internet or within Intranets.

Unfortunately, as reported by Netcraft in 2012, SSL/TLS
can also be used spitefully [2]. Netcraft found a significant
number of phishing websites using valid SSL certificates is-
sued by trusted Certificate Authorities (CA), such as Symantec
and Comodo. These websites intended to employ HTTPS to
convince victims to trust them. Even though they account for
a small fraction of phishing attacks, they are eroding trust in
SSL/TLS. In the rest of this paper, we will use the term SSL
instead of SSL/TLS.

To establish an encrypted communication using SSL, a
client and a server perform a handshake. The client requests the
SSL certificate from the server. Upon receiving the server’s cer-
tificate, the client performs certificate verification as follows. It
uses the corresponding preloaded CA’s public key to verify the
authenticity of the digital signature in the server’s certificate. It
also validates the certificate by checking the certificate’s issued
and expiry dates. Finally, it generally verifies that the service
for which the certificate has been issued matches the service
to which it wishes to connect.

The most popular SSL clients and servers are web browsers
and servers. Typically, when encountering a server’s certifi-
cate issued by an untrusted CA, an expired certificate, or
a mismatched domain, browsers issue a security warning to
users. Browsers also provide more security assistance to their
users. For example, by clicking on a padlock in the browser
window, users can see information related to the website’s
certificate, the certificate’s issuer, and the period of validity of
the certificate. browsers issue a security warning. Furthermore,
browsers show a green address bar when a user is connecting
to a website using an Extended Validation (EV) certificate.
The green bar implies that such a connection is more secure,
because CAs use an audited and rigorous entity authentication
to issue an EV certificate [3]. However, users must eventually
assume the responsibility of trusting an HTTPS website.

The contributions of this paper are fourfold. First, we
propose three methods for classifying SSL servers in terms
of security: (1) Distinguished Names-based (DN-based), (2)
protocol version and encryption algorithm-based, and (3) com-
bined vulnerability score-based methods. Second, we used the
proposed methods to classify a large dataset of real-world
SSL servers, which were active from July 2010 to May 2011,
and present the results. Third, we studied the correlation
between the trustworthiness of the certificates and the security
of the server-side security parameters. Fourth, we propose 45
features, deemed relevant to security assessment, for future
SSL data collection and analysis.

More specifically, the DN-based method checks identity
information, called Distinguished Names or DN in the server’s
certificate, and then uses that information to determine the
security level of that server. The protocol version and en-
cryption algorithm-based method directly takes into account
known security flaws of the protocol version and the encryption
algorithm chosen by the server. The combined vulnerability
score-based method examines multiple criteria related to the
server-side security parameter settings. It computes security
vulnerability scores for each criteria and eventually combines
those scores to assess the server. The usefulness of these
methods is that they can be implemented as a supplementary
client-side security module (e.g., a web browser plug-in) to aid
users in assessing the risk of their SSL communications. For
example, a web browser integrating our classifier could raise
a security alarm when the user’s encrypted data may easily be
compromised due to a weak cipher, or when the user connects
to a malicious server.

The rest of the paper is structured as follows: In Section II,
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TABLE I. FEATURES TO DISTINGUISH MALICIOUS CERTIFICATES FROM LEGITIMATE CERTIFICATES [1]

# Feature name Type Notes
1 md5 boolean The signature algorithm of the certificate is md5WithRSAEncryption
2 bogus subject boolean The subject section of the certificate is clearly bogus
3 self-signed boolean The certificate is self-signed
4 host-common-name-sim boolean The subject’s common name and domain name share the same domain root
5 issuer common string The issuer’s common name
6 issuer organization string The issuer’s organization name
7 issuer country string The issuer’s country
8 subject country string The subject’s country
9 validity duration integer The validity period (in days)

we describe related work and existing public SSL datasets.
In Section III, we describe the SSL handshake along with
which information our methods used and also describe the
X.509 certificate. In Section IV, we describe the SSL dataset
investigated in this paper. We describe the proposed SSL server
classification methods in Section V. The classification and
study results are shown in Section VI. In Section VII, we dis-
cuss the limitations of our methods, emerging SSL handshake-
information-based features for security assessment, and present
the list of 45 features for future SSL data collection. Finally,
we discuss our conclusions in Section VIII.

II. RELATED WORK

A. SSL Server Assessment

There is much research on analyzing and studying trust
networks driven by SSL. Coarfa et al. [4] comprehensively
studied the performance costs of SSL, such as CPU and cryp-
tographic operational cost. Eckersley and Burns [5], [6] from
the Electronic Frontier Foundation (EFF) and iSEC Partners
observed several characteristics of Internet X.509 Certificates
such as their validity, issuers, and Distinguished Names (DN).
Holz et al. [7] studied the X.509 Public Key Infrastructure
(PKI), taking particular interest in what cipher and signature
algorithms are most widely used, as well as other statistics
such as the number of certificates per host and the most prolific
certificate issuers between 2009 and 2011. Amann et al. [8]
presented a large-scale study of Internet SSL traffic collected
passively from five different operational networks. Vratonjic et
al. [9] also studied the behavior of SSL certificates, measuring
how many SSL servers have domain mismatches. All of them
present analysis results that provide a deeper understanding
about the current state of the SSL trust network.

In this paper, we try to assess the security level of an
SSL server (e.g., HTTPS website) based on the information
embedded in the server’s handshake responses. This section
describes emerging methods that are similar to our work.

As shown in Table I, Almishari et al. [1] proposed a method
for detecting web-fraud domains based on nine certificate fea-
tures. Firstly, they converted certificates to 29-feature vectors
which breakdown as follows: features 5 to 8 account for 6 sub-
features each, and the remaining features (features 1 to 4, and
9) account for one sub-feature. Secondly, they separately fed
the 29-feature vector set to machine learning-based classifiers
to train them. Finally, they selected the domains that were
labeled as malicious by the best classifier. The best classifier
was judged by precision-recall performance metrics. Pan and
Ding [10] proposed an anomaly-based method for detecting
phishing pages. They considered DN attributes in web certifi-
cates as one of several metrics to discriminate phishing pages

from legitimate pages. Their assumption is that a phishing
page has DN attribute values that are inconsistent with the
claimed identity. Ivan Ristic et al. [11] introduced an SSL
server rating guideline on behalf of SSL Labs. They proposed
assigning a trustworthiness score to SSL servers based on
four criteria which are: (1) the SSL protocol version, (2) the
key exchange algorithm and the key size, (3) the encryption
key size, and (4) the server’s SSL certificate. A high score
represents high trustworthiness and vice versa. In the guideline,
a server will immediately get a score of zero when it has a
self-signed, invalid, expired, revoked, or untrusted certificate.
If a domain mismatch is found, the server gets a zero score
as well. Finally, the scores from all criteria are combined for
the final assessment. The OWASP Foundation also provides an
SSL server security testing guideline as a part of the OWASP
Testing Guide v3 [12]. They state several testing criteria like
the SSL Labs criteria, however, they consider two additional
features: the data compression and the hashing algorithms. For
example, if a server has an X.509 certificate signed using MD5,
the server is assessed as a vulnerable server due to known
collision attacks on this hashing algorithm [13].

B. SSL Data Collection

To the best of our knowledge, the Crossbear project [14]
scanned popular websites in the Alexa list [15] from October
2009 to March 2011 from seven locations in the world,
namely Germany, China, Russia, Brazil, Australia, Turkey,
and the United States. Crossbear’s dataset contains informa-
tion of scanned SSL hosts (such as the host name and the
security setting) and their X.509 certificates. The Electronic
Frontier Foundation (EFF) Observatory project [16] provides
SSL server responses derived by scanning all allocated IPv4
space on the Internet in August and December 2010. The
Zmap Team [17] at the University of Michigan [18], [19] and
Rapid 7 [20], [21] provide two datasets: SSL certificate and
HTTPS Ecosystem. The SSL certificate dataset includes X.509
certificates of servers scanned from October through December
2013. The HTTPS Ecosystem dataset is another comprehensive
X.509 dataset collected by performing 110 Internet-wide scans
over 14 months between June 2012 and August 2013. Like
Crossbear, École Polytechnique Fédérale de Lausanne (EPFL)
researchers [9] also provide SSL certificates of the top one
million websites ranked by Alexa [15]. During our survey, we
noted that most researchers use publicly available datasets but
some also create their own, as is the case in [8] where long-
term SSL data was collected passively from SSL traffic flowing
through operational networks. Active web server scanning is
also common as performed by Almishari et al. [1] and for
the data used in [22]. SSL datasets from several sources were
rarely combined for analysis [23].
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Fig. 1. Steps of the SSL handshake and messages

III. OVERVIEW

A. SSL Handshake

SSL helps a client-server application protect the application
data during transfer by creating an encrypted channel for
private communication over the public Internet. Before an
encrypted communication begins, an SSL handshake between
the client and server is performed for security parameter
negotiation and authentication. This section describes the SSL
handshake steps and the information exchanged during the
handshake that are used in our work as key information to
assess an SSL server. Below we describe the SSL handshake
step by step, as shown in Fig. 1.

• The client sends (1) a Client Hello message to
the server to negotiate security parameters that will be
used for the encrypted channel, namely protocol ver-
sions, ciphersuites describing key exchange, encryp-
tion, hashing algorithms, and compression methods.

• The server chooses an acceptable type for each param-
eter and replies with (2) a Server Hello message.

• The server sends its own SSL certificate, usually an
X.509 certificate [24], with (3) a Certificate
message to the client.

• The server sends (4) a Server Hello Done mes-
sage to notify the client that the server is awaiting a
response.

• The client uses the server’s certificate to authen-
ticate the server and then sends (5) a Client
Key Exchange message containing a generated pre-
master secret key to the server. Now both the client
and the server generate session keys based on the pre-
master secret key.

• The client sends (6) Change Cipher Spec and
(7) Client Finished messages to notify the

server that the next messages will be encrypted using
the session key.

• Finally, the server sends (8) Change Cipher
Spec and (9) Server Finished messages to end
the handshake. The client and the server can now
exchange application data.

Because our aim was to assess the security level of the SSL
server, we examined the information in the server’s handshake
messages instead of the information in the client’s messages.
The examined information includes the chosen encryption
algorithm in the Server Hello message and the certificate
in the Certificate message because we believe that the
encryption algorithm which the server chose is a crucial
indicator for assessing security. In addition, we believe that the
server’s certificate is representative of how secure that server
may be.

B. X.509 Certificate

According to the X.509 standard [24], an X.509 certificate
contains a public key, a certificate version, a validity period,
a serial number, a signature algorithm, and a signature. Aside
from those basic fields, the X.509 certificate must contain two
Distinguished Names (DN) fields such as the subject DN and
the issuer DN. The subject DN is the identity description
of the subject who owns the certificate while the issuer
DN describes the identity of the Certificate Authority (CA)
who issued the certificate. These DNs are used when the
client wants to perform name chaining for certification path
validation. Technically, the DN is a set of attributes with
values separated by comma. For example, a subject DN can be
C=US,CN=www.sample.com in which the C is the country
and the CN the common name which is strictly the domain
name. For reasons of compatibility and implementations, as
shown in Table II, the certificate must contain six standard DN
attributes with qualified values, namely C (Country), O (Or-
ganization), OU (Organizational Unit), S (State or province),
CN (Common Name), and SerialNumber (Serial number).

IV. COLLECTION OF SERVER RESPONSES

The SSL dataset that was used in this work, consists
of five SSL surveys: three private surveys launched in July
2010, April 2011, and May 2011 carried out by Levillain et
al. [22]; and two publicly available surveys launched in August
and December 2011 by the Electronic Frontier Foundation
(EFF) [16]. All surveys consist of response messages derived
by probing Internet SSL servers during those periods of time.
Table III describes the specification of the Client Hello
messages that were sent out, the total number of SSL hosts
in each survey that answered the Client Hello messages,
and the total number of SSL hosts categorized by the chosen
protocol version. Note that the total number of hosts in the
#Total SSL hosts column excludes the number of SSL hosts
that replied with Alert messages to refuse SSL negotiations.
For the Jul-2010, Apr-2011, and May-2011 surveys, to gather
the SSL handshake data, Levillain et al. first searched for active
Internet IPv4 hosts that were listening on port 443. Second,
they sent an SSLv2-compatible Client Hello message to
each active host and terminated the connection after receiving
a Server Hello Done message. The Client Hello
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TABLE II. STANDARD DN ATTRIBUTES AND QUALIFIED VALUES [24]

DN attribute name Description Qualified value
C Country Any ISO numeric or ISO ALPHA-2 country code that its size does not exceed two or three bytes respectively
O Organization Any organization name that its size does not exceed 64 bytes
OU Organizational Unit Any organization unit name that its size does not exceed 64 bytes
S State or province Any state or province name that its size does not exceed 128 bytes
CN Common Name Any absolute domain [25] or Certificate Authority (CA) name that its size does not exceed 64 bytes
SerialNumber Serial number Any integer that its size does not exceed 64 bytes

TABLE III. SPECIFICATION OF THE CLIENT HELLO MESSAGES AND THE TOTAL NUMBER OF SSL HOSTS CATEGORIZED BY PROTOCOL VERSION IN
EACH SURVEY

Survey Client Hello message specification The total number of SSL hosts in survey
name Offered highest protocol version Offered ciphersuites #Total SSL hosts #SSLv2 hosts #SSLv3 hosts #TLSv1.0 hosts #TLSv1.1 hosts
Jul-2010 TLSv1.0 Standard Firefox suite 9,683,188 0 (0%) 430,973 (4%) 9,252,214 (96%) 1 (<.0%)
Aug-2010 TLSv1.0 SSLv2 and TLSv1.0 suites 11,045,233 11,226 (0.1%) 504,400 (5%) 10,529,606 (95%) 1 (<.0%)
Dec-2010 TLSv1.0 SSLv2 and TLSv1.0 suites 7,705,536 51 (<.0%) 316,933 (4%) 7,388,551 (96%) 1 (<.0%)
Apr-2011 TLSv1.0 Standard Firefox suite 7,134,873 0 (0%) 156,890 (2%) 6,977,983 (98%) 0 (0%)
May-2011 TLSv1.0 Standard Firefox suite 3,796,437 0 (0%) 52,404 (1%) 3,744,133 (99%) 0 (0%)

message for these three surveys offered TLSv1.0 as the highest
supported protocol version and offered standard Firefox ci-
phersuites. For the Aug-2010 and Dec-2010 surveys, EFF sent
Client Hello messages proposing SSLv2 and TLSv1.0
ciphersuites, and specified TLSv1.0 as the highest supported
protocol version. In summary, there were about 9.6 million
active SSL servers in the Jul-2010 survey and 11 million SSL
servers in the Aug-2010 survey. About seven million SSL
servers responded to the Dec-2010 and the Apr-2011 surveys.
The May-2011 survey contained about 3.7 million SSL servers.
More specifically, most probed SSL hosts (more than 94%) in
every survey chose TLSv1.0. The next most popular protocol
versions which were chosen were SSLv3 and SSLv2.

V. CLASSIFICATION METHOD

In this paper, we focus on the classification of SSL servers
in terms of security using the information embedded in the
Server Hello and Certificate messages sent by the
servers during the SSL handshake. This section describes the
three proposed classification methods based on that informa-
tion.

A. Certificate Information

In this work, we make the following assumptions. First, a
reliable certificate (e.g., a certificate signed by a trusted CA)
tends to include all standard DN attributes with qualified val-
ues. Conversely, an unreliable certificate tends to have sloppy
DNs. Second, a certificate issued by a known compromised
CA or a CA offering incredibly-cheap/free certificates is likely
to be a risky certificate. Third, a self-signed certificate is not
inherently trusted. Finally, we assume that most malicious
servers (e.g., a phishing host) tend to hold unreliable or risky
certificates due to their negligence. Based on the information
in [24] and these assumptions, we propose the following
certificate-based indicators can be used to discriminate risky
SSL servers from seemingly harmless SSL servers.

• Indicator 1: at least one standard DN attribute is not
presented in the certificate.

• Indicator 2: at least one standard DN attribute value is
not a qualified value specified according to Table II.

• Indicator 3: the value of the O/OU attribute contains
self-signed, 127.0.0.1, any compromised CA

name, or any name of CAs/resellers issuing low-priced
or free certificates.

To find compromised CAs, we searched for disclosures
regarding CAs that have been compromised and alleged risky
CAs. On March 15, 2011, the US CA Comodo reported
that its registration authorities had been hacked [26]. In the
same year, DigiNotar, a big Dutch CA, was hacked, which
resulted in the fraudulent issuing of certificates for a number
of domains [27]. GoDaddy was allegedly hacked in 2012,
and that resulted in several hours of downtime for millions
of websites [28]. However, GoDaddy claimed later that it was
only an internal network problem. Below we list the string
keywords containing names of the compromised CAs and
some CAs/resellers offering low-priced/free SSL certificates
identified so far.

• Compromised CAs: Comodo, DigiNotar, and
GoDaddy.

• CAs/resellers offering certificates with low-priced
costs: Namecheap, RapidSSL, fxdomain,
hostingdude, and cheap-domainnames.

• CAs/resellers offering free certificates: StartSSL,
StartCom, and CAcert.

For a real implementation, indicator 2 could be replaced
with the following two representative indicators in case that the
user’s application must reduce memory usage and matching
time for analysis. With these representative indicators, the
application could use a checklist that is smaller than the size
of the full whitelist shown in Table II.

• Representative indicator 1: the CN’s value is not in
domain name format.

• Representative indicator 2: at least one standard DN
attribute (not including SerialNumber) contains one of
the following values.
◦ an empty or an implied empty value (e.g., “”,

“ ”, NONE, None, none, BLANK, blank,
X(s), ?(s), or -(s)),

◦ a default value (e.g., S=“SomeState”) or a
seemingly meaningless value (see Table IV).
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TABLE IV. SEEMINGLY MEANINGLESS VALUES OF EACH STANDARD DN ATTRIBUTE

C (Country) O (Organization) OU (Organizational Unit) S (State/province) CN (Common Name)
XY, NON-STRING-VALUE, SomeState, single double quotation, SomeState, localhost.localdomain,
single double quotation Someprovince, Single dot, SomeState, Someprovince, 127.0.0.1

SomeOrganization, Someprovince, Some_State,
MyCompany SomeOrganizationUnit, Select one,

Division, section Default, default

TABLE V. PROTOCOL VERSION AND ENCRYPTION ALGORITHM PAIRS
FOR SSL SERVER ASSESSMENT

Protocol Secure Risky Insecure
version algorithm algorithm algorithm
SSLv3 None 3DES_CBC, DES_CBC,

IDEA_CBC RC2_CBC,
RC4

TLSv1.0 None 3DES_CBC, DES_CBC,
AES_CBC, RC2_CBC,
IDEA_CBC RC4

TLSv1.1 3DES_CBC, None DES_CBC,
AES_CBC, RC2_CBC,
IDEA_CBC RC4

TLSv1.2 3DES_CBC, None RC4
AES_CBC,
AES_CCM,
AES_GCM,
Camellia_CBC,
Camellia_GCM

B. Protocol Version and Encryption Algorithm

A key assumption we make is that the protocol version and
the encryption algorithm chosen by an SSL server are suitable
parameters to assess the security level of the communication as
well as the SSL server. From a security standpoint, application
data sent over a weak protocol version (e.g., SSLv2) or
encrypted with a weak encryption algorithm (e.g., RC4 [29])
is in danger due to their security flaws. On the other hand,
if the data was sent using a known-good protocol version
or a strong encryption algorithm that does not suffer from
any known security vulnerabilities, the client can assume that
the communication is safer. To assess an SSL server, we
analyzed the encryption algorithms supported by each SSL
protocol version and assessed their efficiency based on publicly
discovered flaws. Table V categorizes the implementation
of different encryption algorithms by different versions of
SSL with respect to their security. A secure server is one
that selects a known-strong protocol version and encryption
algorithm. The strongest protocol version at the moment is
TLSv1.2. Some known-secure encryption algorithms are the
Advanced Encryption Standard (AES) standardized by the
US National Institute of Standards and Technology (NIST)
in 2001 and Camellia developed later by Mitsubishi and
Nippon Telegraph and Telephone (NTT). We consider AES
and Camellia as secure encryption algorithms because AES
has yet to be compromised by any attacker and Camellia
has been proven as strong as AES [30]. Furthermore, to
break these algorithms, technically an attacker requires an
enormous number of years, e.g., 5×1021 years for 128-bit AES
encryption [31]. On the other hand, a risky server is one that
selects a risky encryption algorithm and SSL protocol version
that may be vulnerable to attacks. CBC ciphers are considered
risky because they can be broken by the BEAST (Browser
Exploit Against SSL) attack [32]. However, if the user’s
application is designed to defeat the BEAST attack, the attack
can be mitigated. For example, Firefox and Chrome using
Network Security Services (NSS) libraries for BEAST-like

attack mitigation are able to reduce the effect of the BEAST
attack. Table V also indicates that if a server uses a newer
version of SSL, the security of that server increases because the
number of implementation flaws has decreased. For example, a
server that chooses 3DES_CBC with TLSv1.1 is described as
secure because TLSv1.1 has fixed issues regarding the BEAST
attack. Finally, an insecure server is one that selects any
publicly known weak encryption algorithm. For example, DES
has been defeated by brute-force and differential [33] attacks,
and RC2 or RC4 have been defeated by related-key attack [34].
Most importantly, a server that selects old-fashioned SSLv2
with any encryption algorithm is immediately considered as
insecure because SSLv2 is flawed in a variety of ways [35]. For
example, it has a weak Message Authentication Code (MAC)
construction that uses MD5 with a secret prefix, making it
vulnerable to length extension attacks [36].

C. Security Assessment Score

Instead of using a single criterion to assess the security
of an SSL server, we combine two criteria, still based on
the server response: (1) the SSL protocol version and the
encryption algorithm that the server chooses and (2) the
certificate’s DN. Table VI shows the assessment criteria with
cases and the assigned scores, which are vulnerability scores,
of each case. Criteria 1 consists of nine cases ranked from high
to low vulnerability based on the known flaws of those protocol
versions and encryption algorithms similar to the proposed
method in Section V-B. In Table VI, the set of protocol version
and encryption algorithm pairs (secure, risky, and insecure)
is the same set shown in Table V. For the scores of criteria
1, we assigned high scores for high vulnerability cases and
assigns low scores for low vulnerability cases. As a result, we
initially assigned the highest score, which is 1.5, to case 1.1
associated with SSLv2. Due to the smaller number of security
flaws of SSLv3 compared to SSLv2, cases 1.2 to 1.4 were
assigned lower scores which are in a range from 1.25 to 1.
The scoring gap among those SSLv3 cases is 0.125. For the
same reason, cases 1.5 to 1.7 associated with TLSv1.0 were
assigned a range with lower scores that are between 0.625 to
0.5. The scoring gap between the TLSv1.0 cases is smaller
than the scoring gap of SSLv3 cases. It is 0.625, which
is one half of the scoring gap of SSLv3 cases (0.125/2).
For case 1.8 associated with TLSv1.1, we gave a score of
0.0625, which is smaller than case 1.7’s score. We assigned
the lowest score to case 1.9 associated with TLSv1.2, which
is the most secure SSL protocol at the moment. As a result,
case 1.9 has a score of 0.03125, which is one half of case
1.8’s score. Next, criteria 2 consists of two cases associated
with the certificate’s DN. Case 2.1 conforms to indicator 1
described in Section V-A. Case 2.2 conforms to indicators
2 and 3. We assigned a score of 1 to case 2.1, which is
similar to the score of case 1.4 because we assumed that a
server with a certificate not conforming to the X.509 standard
has a moderate vulnerability. Finally, case 2.2 was assigned
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TABLE VI. CRITERION AND VULNERABILITY SCORES FOR SSL
SERVER ASSESSMENT

Criteria 1: vulnerability of protocol version & Vulnerability
encryption algorithm score
1.1: SSLv2 with any encryption algorithm 1.5
1.2: SSLv3 with a weak encryption algorithm 1.25
1.3: SSLv3 with a risky encryption algorithm 1.125
1.4: SSLv3 with a secure encryption algorithm 1
1.5: TLSv1.0 with a weak encryption algorithm 0.625
1.6: TLSv1.0 with a risky encryption algorithm 0.5625
1.7: TLSv1.0 with a secure encryption algorithm 0.5
1.8: TLSv1.1 with a weak encryption algorithm 0.0625
1.9: TLSv1.2 with a weak encryption algorithm 0.03125
Criteria 2: trustworthiness of certificate’s DN Score
2.1: At least one standard DN attribute does not 1
presented in the certificate
2.2: A standard DN attribute with invalid value 0.2/instance

TABLE VII. CLASSIFICATION RESULTS BASED ON CERTIFICATE
INFORMATION

Survey name #Seemingly harmless servers #Risky servers
Jul-2010 3,291,377 (34%) 6,391,811 (66%)
Aug-2010 3,749,160 (34%) 7,296,073 (66%)
Dec-2010 2,957,136 (38%) 4,748,400 (62%)
Apr-2011 2,193,934 (31%) 4,940,939 (69%)
May-2011 1,149,757 (30%) 2,646,680 (70%)

a score of 0.2 for each found invalid value. For example,
if the C (Country) attribute is not a country code, and the
OU (Organizational Unit) attribute contains self-signed,
the total score of case 2.2 is 0.4. Note that these scores are
adjustable as long as those scores are in the same order with
the score in Table VI or each score is scaled accordingly. For
example, if a score of 10 is assigned to case 1.1, then case
1.2’s score is supposed to be less than 10. In addition, case
1.3’s score is supposed to be less than case 1.2’s score.

To assess the security level of an SSL server, the total
vulnerability score (Tscore) derived from combining criteria
1’s score and criteria 2’s score is calculated. Then, the Tscore
is used to determine the security level of that server. More
specifically, the Tscore is calculated using the following
equation.

Tscore = ω1(criteria1Score) + ω2(criteria2Score) (1)

where criteria1Score is the score of criteria 1 and
criteria2Score is calculated by summing the scores of case
2.1 and case 2.2. The ω1 and ω2 are weights for criteria 1 and
2 respectively.

VI. EXPERIMENTAL RESULTS

We performed three experiments to classify real-world SSL
servers based on the three proposed methods described in
Section V. We used the five SSL surveys from Levillain et
al. and the Electronic Frontier Foundation (EFF) described
in Section IV. Table III shows their details.. We also studied
the behavior of the SSL servers in those surveys, particularly
focusing on the relationships between: (1) the certificate qual-
ity and the protocol version and (2) the certificate quality,
the cipher strength, and the trustworthiness of key exchange
algorithm. This section describes the classification results of
each method and the study results in detail.

A. Certificate Information

In this experiment, we clustered the SSL servers in the
surveys based on the certificate-based classification method

TABLE VIII. CLASSIFICATION RESULTS BASED ON PROTOCOL
VERSION AND ENCRYPTION ALGORITHM

Survey #Secure #Risky #Insecure #Unknown
name servers servers servers servers
Jul-2010 0 5,972,246 3,400,572 310,370 (3%)

(0%) (62%) (35%) (3%)
Aug-2010 1 7,068,241 3,970,174 6,817

(<0.5%) (64%) (36%) (<0.5%)
Dec-2010 1 4,938,107 2,762,196 5,232

(<0.5%) (64%) (36%) (<0.1%)
Apr-2011 0 4,444,114 2,350,419 340,340

(0%) (62%) (33%) (5%)
May-2011 0 3,675,969 109,409 11,059

(0%) (97%) (3%) (<0.5%)

that we proposed in Section V-A. We used indicators 1 and
3, and the representative indicators 1 and 2 to separate the
SSL servers into two classes: risky and seemingly harmless.
We used the same keyword set of compromised CAs and
CAs/resellers described in Section V-A for indicator 3. Note
that in this experiment, we inspected only the certificate’s
subject DN because we lacked information of the issuer DN for
the Jul-2010, Apr-2011, and May-2011 surveys. If a server’s
certificate matches at least one indicator, the server is classified
as risky immediately. Table VII shows the total numbers of
seemingly harmless and risky SSL servers in each survey. The
results indicate that more than 61% of the SSL servers in every
survey fell into the risky class and the rest of the servers are
in the seemingly harmless class. This means that most SSL
servers, active during July 2010 to May 2011, had subject DNs
that did not conform to the X.509 standard and/or contained
seemingly risky values.

B. Protocol Version and Encryption Algorithm

The purpose of this experiment was to classify the SSL
servers in the surveys based on the SSL protocol versions
and the encryption algorithms that the servers chose during
handshakes. We used Table V to classify the servers into
three classes: secure, risky, and insecure. If a server chose
an encryption algorithm that is not contain in Table V, we
classified it as an unknown server. Table VIII shows the total
numbers of SSL servers classified into each class for each
survey. The results indicate that more than 61% of the SSL
servers in every survey appear to be risky. Interestingly, up
to 97% of the servers in the May-2011 survey chose risky
protocol version and encryption algorithm pairs. In this work,
we did not check to see if those risky servers that we found in
the May-2011 survey existed or not in the older surveys (the
Jul-2010, Aug-2010, Dec-2010, and Apr-2011 surveys). Thus,
we could not confirm whether the servers tried to downgrade
the security. The results also indicate that there was only
one secure server in the Aug-2010 and Dec-2010 surveys.
Except for the May-2011 survey, about 35% of all servers
chose insecure protocol version and encryption algorithm pairs.
Finally, we encountered a few servers that used unknown
encryption algorithms.

C. Security Assessment Score

Next, we measured the security levels of the SSL servers
using the score-based method proposed in Section V-C. For
case 2.2, we used the representative indicators 1 and 2. In
each survey, by using equation 1 and the assigned scores in
Table VI, we calculated the Tscore of each server. In this
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TABLE IX. VULNERABILITY SCORE RANGES WITH SECURITY LEVELS
TO ASSESS AN SSL SERVER

Total vulnerability score (Tscore) range Security level
Tscore < 0.5 Best
0.5 ≤ Tscore < 1 Good
1 ≤ Tscore < 1.5 Average
1.5 ≤ Tscore < 2 Bad
Tscore ≥ 2 Worst

experiment, ω1 and ω2 were set to be one, which means that we
have weighted the two criteria equally. As a result, the Tscore
was in the range from 0 to 3.5 (1(1.5)+1(1+(5×0.2))).
Note that the values assigned to ω1 and ω2 can be adjusted,
depending on how much importance is given to each criteria.
For example, if using a weak protocol version/encryption
algorithm is considered more critical than having an untrusted
DN, then ω1 > ω2. Instead of directly representing the security
level of a server by its Tscore, we defined five intuitive terms
to qualitatively describe the security levels: (1) best, (2) good,
(3) average, (4) bad, and (5) worst. Table IX shows the total
vulnerability score (Tscore) ranges for the five security levels.
The classification results based on their total vulnerability
scores are shown in Table X. The results reveal that there
are no servers that appear to be the best server in terms of
security in the surveys. About 43% of the servers are good
servers and about 50% of the servers are bad servers, a bimodal
distribution. The results also show that less than 7% of the
servers have either average or worst security levels.

D. SSL Server Behavior

To gain more knowledge from the SSL dataset, we also
studied the SSL server behavior. Our aim was to investigate
the relationships between (1) the certificate quality and the
protocol version; and (2) the certificate quality, the cipher
strength, and the security level of the key exchange algorithm
of the SSL servers in the surveys.

1) Certificate quality and protocol version: There are
three grades of SSL certificates in general, namely Extended
Validation (EV), Organization Validation (OV), and Domain
Validation (DV). The EV certificate is widely considered to be
the most trusted SSL certificate nowadays because obtaining it
requires extensive entity verification of the certificate requester
by a Certificate Authority (CA) [3]. Thus, an SSL server
holding an EV certificate is fairly reliable. The OV certificate
requires less entity verification steps than the EV certificate.
The DV certificate provides the lowest level of entity verifica-
tion because a DV certificate can be issued online and often is
offered at a much lower price than the OV and EV certificates.
This makes the DV certificate less trustworthy than the OV and
EV certificates. Self-signed certificates are another type of SSL
certificates which are issued by the server themselves with no
entity verification. Thus, a self-signed certificate is unreliable.

In this study, we assessed the quality of the SSL certificates
in the surveys based on their certificate type and subject
DN. We found that most SSL servers in the surveys held
OV certificates and provided imperfect DNs. Furthermore,
surprisingly we found that some servers chose TLSv1.1 and
had self-signed certificates. This means that an SSL server that
chooses a secure protocol version does not necessarily also use
a trusted certificate.

TABLE X. CLASSIFICATION RESULTS BASED ON SECURITY
ASSESSMENT SCORE

Survey #Good #Average #Bad #Worst
name servers servers servers servers
Jul-2010 4,462,945 472,745 4,494,127 253,371

(46%) (5%) (46%) (3%)
Aug-2010 4,933,374 521,230 5,307,106 283,523

(42%) (5%) (48%) (3%)
Dec-2010 3,720,084 308,675 3,482,081 194,696

(48%) (4%) (45%) (3%)
Apr-2011 2,764,267 258,491 4,027,915 84,200

(39%) (4%) (56%) (1%)
May-2011 1,526,521 212,406 2,053,710 3,800

(40%) (6%) (54%) (<0.5%)

2) Certificate quality, cipher strength and trustworthiness
of key exchange algorithm: Another aim was to study the
relationship between the certificate quality, the cipher strength,
and the trustworthiness of the key exchange algorithm that SSL
servers in the surveys chose during a handshake. To study
this, the certificate quality of a server was measured based on
the certificate type and the subject DN similar to the previous
study. For cipher strength, we used the information shown in
Table V as well as the key size that the server used to encrypt
the data. Fundamentally, a large key size will have more
strength than a small key size because an attacker requires
more time to compromise such key. For example, using the
same encryption algorithm, if data A is encrypted with a 256-
bit key and data B is encrypted with a 128-bit key, then data
A is safer than data B. The last feature that we studied was
the trustworthiness of the key exchange algorithm identified
in the chosen ciphersuite in the Server Hello message.
This algorithm is used in the authentication process between
a client and a server when they do a handshake. To assess
the trustworthiness of the key exchange algorithm, we simply
assumes that an anonymous key exchange algorithm is likely to
be less robust. On the other hand, a well-known key exchange
algorithm is likely to be more trustworthy. Our study found that
the majority of SSL servers in every survey chose well-known
key exchange algorithms, such as RSA, DHE_RSA, DHE_DSS,
DH_RSA, and DH_DSS. Furthermore, we found that some SSL
servers in the surveys had unreliable SSL certificates although
they also chose very strong ciphers and vice versa.

VII. DISCUSSION

By analyzing the collection surveys, we found that most
SSL servers chose risky encryption algorithms (e.g., RC4)
with well-known key exchange algorithms. This confirms what
Holz et al. [7] and Amann et al. [8] stated who discovered
that the most frequent cipher used is RC4 with RSA. We
also found that most servers in the surveys were holding
Organization Validation (OV) certificates, which are in practice
more trustworthy than Domain Validation (DV) and self-signed
certificates.

Our results were based solely on known flaws which have
been disclosed, among the current implementations on the
server side. Therefore, for the moment, our methods may pro-
vide effective and precise assessments until a new flaw/attack
on cryptographic protocol is revealed or its protocol imple-
mentation is refined. This is one limitation of our methods.
To preserve the efficiency and accuracy of assessment of our
methods, the classification models must be updated regularly.
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TABLE XI. PROPOSED 45 FEATURES FOR FUTURE SSL SERVER ASSESSMENT

# Feature name Type Feature description
1 Country string The county code where the server is located
2 City string The city name where the server is located
3 Region string The region code where the server is located
4 Area integer The area code where the server is located
5 Time zone string The time zone of the region where the server is located
6 DMA integer The Designated Market Area code where the server is located
7 Metro integer The metropolitan area code where the server is located
8 Postal code integer The postal code where the server is located
9 Latitude number The latitude number where the server is located
10 Longitude number The longitude number where the server is located
11 Continent string The continent name where the server is located
12 Organization string The organization name who owns the server
13 AS integer The Autonomous System number of the zone where the server is located
14 ISP string The Internet Service Provider of the server

15* Protocol version number The SSL protocol version that the server chooses during SSL handshake
16 Key exchange algorithm string The key exchange algorithm that the server chooses during SSL handshake
17 Hashing algorithm string The hashing algorithm that the server chooses during SSL handshake

18* Encryption algorithm string The encryption algorithm that the server chooses during SSL handshake
19* X.509 country string The country attribute’s value specified in the SSL certificate’s Distinguished Names (DN)
20* X.509 state string The state attribute’s value specified in the SSL certificate’s DN
21 X.509 city string The city attribute’s value specified in the SSL certificate’s the SSL certificate’s DN

22* X.509 organization string The organization name attribute’s value specified in the SSL certificate’s DN
23* X.509 organizational unit string The organizational unit attribute’s value specified in the SSL certificate’s DN
24* X.509 common name string The common name attribute’s value specified in the SSL certificate’s DN
25 X.509 domain component string The domain component attribute’s value specified in the SSL certificate’s DN
26 X.509 surname string The surname attribute’s value specified in the SSL certificate’s DN
27 X.509 given name string The given name attribute’s value specified in the SSL certificate’s DN
28 X.509 email address string The email address attribute’s value specified in the SSL certificate’s DN
29 X.509 MAC string The Message Authentication Code attribute’s value specified in the SSL certificate’s DN
30 X.509 serial number number The serial number attribute’s value specified in the SSL certificate’s DN
31 X.509 title string The title attribute’s value specified in the SSL certificate’s DN
32 X.509 description string The description attribute’s value specified in the SSL certificate’s DN
33 X.509 business category string The business category attribute’s value specified in the SSL certificate’s DN
34 X.509 postal address string The postal address attribute’s value specified in the SSL certificate’s DN
35 X.509 postal code string The postal code attribute’s value specified in the SSL certificate’s DN
36 X.509 post office box string The poster office box number attribute’s value specified in the SSL certificate’s DN
37 X.509 street address string The street address attribute’s value specified in the SSL certificate’s DN
38 X.509 telephone number number The telephone number attribute’s value specified in the SSL certificate’s DN
39 X.509 initials string The initials attribute’s value specified in the SSL certificate’s DN
40 X.509 certificate type string The type of the server’s certificate (e.g., Extended Validation)
41 Security degree of protocol version number The vulnerability score of the SSL protocol version that the server chooses during SSL handshake
42 Security degree of X.509 certificate number The vulnerability score of the server’s SSL certificate
43 Security degree of cipher number The vulnerability score of the encryption algorithm and encryption key size that the server chooses
44 Security degree of key exchange mechanism number The vulnerability score of the key exchange mechanism that the server chooses

45* Security degree of SSL server number The overall vulnerability score of the server

Aside from the SSL protocol version, our work considered
the cryptographic parameters (encryption algorithm and its key
size), the key exchange algorithm, and the server’s certificate
(type and its identity description). However, other entities also
can be used as indicators to measure the security level of an
SSL communication/server. SSL Labs [11] assumed that an
SSL certificate that has been revoked (whatever the reason)
should not be trusted, thus a server with a revoked certificate is
penalized as an insecure server. Currently, some web browsers
(e.g., Internet Explorer from version 7 and Firefox) optionally
consider the revocation status of an X.509 certificate to help
their users verify the certificate’s validity by using the Online
Certificate Status Protocol (OCSP). In [11], the authors also
argue that a well-deployed SSL server should avoid the use of a
wildcard certificate. They claim that although existing wildcard
certificates are not any less secure from a strict technical
point of view, the way in which these wildcard certificates are
typically handled (especially in larger organizations) makes
them less secure in practice. Furthermore, using a wildcard
is not permitted for an EV certificate. Thus, the existence
of a wildcard may be an good indicator for SSL security
assessment. The hashing algorithm used to create the message
digest can also be used for SSL server security rating [11],

[12]. The server’s public key can be used as well to determine
the likelihood of exploitation of an SSL server using an old
version of OpenSSL [37]. The cryptographic library/toolkit
that the server uses can be used for assessment. For example,
if an SSL server uses OpenSSL version 1.0.1 through 1.0.1f
or 1.0.2 beta through 1.0.2-beta1, it is vulnerable to the Heart-
bleed attack [38]. The data compression algorithm for an SSL
channel is also a relevant indicator [12] because if compression
is enabled, the communication can be compromised by the
CRIME and BREACH attacks [39], [40]. As a result, most
web browsers currently either disable or permanently remove
the compression feature to mitigate these attacks.

Finally, based on the experiences gained through this study,
we propose 45 features shown in Table XI for future SSL data
collection. These features consist of the features or indicators
used in the research and practice described above as well as
the geolocation features of SSL servers deemed relevant to
security assessment. Note that the eight features marked with
“*” were used in this work and the remaining features are
the newly proposed features. More specifically, features 1 to
14 are the geolocation information of the server, such as the
country and the city where the SSL server is located, and the
Internet Service Provider (ISP) of the server. Feature 15 is
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the protocol version chosen by the server. Features 16 to 18
are security algorithms described in the chosen ciphersuite.
Features 19 to 40 are the certificate’s DN attributes, which
include standard and optional DN attributes. Features 41 and
42 are the vulnerability scores of the chosen SSL protocol
version and the server’s certificate respectively. Feature 43
is the vulnerability score of the cipher (encryption algorithm
and encryption key size). Feature 44 is the key exchange
mechanism’s vulnerability score. Finally, feature 45 is the
overall vulnerability score of the server

VIII. CONCLUSION

In this paper we proposed three methods to classify SSL
servers in terms of security: (1) Distinguished Names-based
(DN-based), (2) protocol version and encryption algorithm-
based, and (3) combined vulnerability score-based methods.
Then we classified Internet SSL servers active between July
2010 and May 2011 based on our proposed methods. We found
that more than 61% of the SSL servers were classified as risky
because they were using SSL certificates containing seemingly
meaningless subject DNs and/or choosing risky SSL protocol
versions and encryption algorithms for communications. By
considering multiple criteria, we found servers had a bimodal
distribution, with mostly good and bad levels of security. Fur-
thermore, we studied a correlation between the trustworthiness
of the certificates and the security of the security parameters
that the servers chose. We did not find a correlation between
them: a server with a trusted certificate may provide insecure
communication and vice versa. Finally, we also found that
the majority of the servers had Organization Validation (OV)
certificates.
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Abstract—Network security is a long-lasting field of research
constantly encountering new challenges. Inherently, research in
this field is highly data-driven. Specifically, many approaches
employ a supervised machine learning approach requiring la-
belled input data. While different publicly available data sets
exist, labelling information is sparse. In order to understand
how our community deals with this lack of labels, we perform
a systematic study of network security research accepted at top
IT security conferences in 2009 – 2013. Our analysis reveals that
70% of the papers reviewed rely on manually compiled data
sets. Furthermore, only 10% of the studied papers release the
data sets after compilation. This manifests that our community
is facing a missing labelled data problem. In order to be able to
address this problem, we give a definition and discuss crucial
characteristics of the problem. Furthermore, we reflect and
discuss roads towards overcoming this problem by establishing
ground-truth and fostering data sharing.

I. INTRODUCTION

Network security is a highly active field of research.
Especially, development of effective and efficient network
anomaly detection systems is constantly challenging academia
and industry. For anomaly detection, the majority of contem-
porary research (e.g. [1]–[5]) follows a supervised machine
learning or statistical approach and, consequently, requires a-
priori labelled input data for training and evaluation. Un-
fortunately, such data is rare. Most public data repositories
offering network traffic samples provide only anonymised
data and do not contain labels. Hence, data sets available
in these repositories can not be linked to other databases
(e.g. blacklists) in order to derive labels. As a consequence,
researchers often individually collect data sets in environments
where expert knowledge of network traffic is available and,
because of that, labels can be assigned automatically or semi-
automatically. These environments include, but are not limited
to working group, campus or industry networks. Data won
in such environments typically contains sensitive information,
i.e. personally identifiable information, such as IP addresses or
login credentials and, unfortunately, cannot be widely shared.

In order to understand how our community handles this
limitation in available data sets and which data sets our
community utilises, we review in this paper 106 network
security papers accepted at top IT security conferences in
the years 2009 – 2013 according to the data sets used for
training and evaluation. Additionally, we analyse and discuss
existing publicly accessible data repositories and the data sets
provided therein. Based on these analyses, we identify two
main weaknesses in our community:

1) Researchers in our community tend to manually com-
pile data sets for system design. External data sets
are typically included for later evaluation. However,
both data sets are typically not publicly released.
We speculate about reasons for this data sharing
shortcoming in Sect. III-D1.

2) The absence of a-priori labelled data sets combined
with the previously mentioned data sharing shortcom-
ing leads to a lack of ground-truth data. As argued
in Sect. III-D2, this missing labelled data problem -
as we are tempted to call it - affects repeatability and
comparability of research.

Furthermore, we reflect the results of our analysis in context of
related work in our community. Specifically, we discuss work
in three complementary directions that our community may
follow in order to foster data sharing and increase repeatability
and comparability of research.

Our work is motivated by own experiences when perform-
ing data-driven network security experiments. Furthermore, we
recognised that absence of adequate data sets and difficulties
in compiling such data sets is often incidentally remarked
in papers. In doing this analysis, we hope that our paper
contributes to and stimulates an ongoing active discussion on
availability and quality of labelled data in our community by
quantifying and defining the problem we are facing. To the
best of our knowledge, we are the first to perform a systematic
and comparative analysis of data sets utilised in contemporary
network security research.

The remainder of this paper is structured as follows:
Section II gives an overview of existing public data repos-
itories and discusses general issues and limitations of these
repositories. Section III presents the results of our analysis of
recent research and concludes that our community is facing
a missing labelled data problem. In Section IV, we discuss
and reflect possibilities to overcome this problem. Section V
gives an overview and discussion of related work. Section VI
summarises and concludes.

II. ANALYSIS OF PUBLIC DATA REPOSITORIES

Currently, different public data repositories comprising
varying network traffic traces exist. A listing of these repos-
itories is given in Table I. Probably the most notable data
repositories (simply by size) are CAIDA and PREDICT. The
Cooperative Association for Internet Data Analysis (CAIDA)
continuously performs Internet traffic measurements at varying
scales and with varying granularity. The CAIDA repository
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contains public and semi-public data sets that can be freely
downloaded or requested by researchers. The CAIDA reposi-
tory contains, amongst others, Internet traffic statistics, as well
as Internet topology data sets, backscatter traces and real-world
Internet traffic captures. In the latter data sets, IP addresses are
typically anonymised using Crypto-PAn [6] and packet payload
is removed. Unfortunately, traffic captures provided by CAIDA
are unlabelled.

The Protected Repository for the Defense of Infrastructure
Against Cyber Threats (PREDICT) is an effort to provide a
distributed data repository together with centrally managed
access processes. PREDICT is funded by the US Department
of Homeland Security (DHS) and data sets are contributed by
different data providers, one of which is CAIDA. PREDICT
offers three classes of data: unrestricted data, quasi-restricted
data and restricted data. Unrestricted data is available to every
PREDICT user that completed the formal sign-up process.
Quasi-restricted and restricted data are only accessible after
completing sign-up and after request is granted by the data
provider or the PREDICT application review board, respec-
tively. Data sets indexed by PREDICT contain, amongst others,
BGP routing data, DNS data, darknet and sinkhole data,
Netflow data, topology data as well as packet header captures
and synthetically generated data. Most data sets provided
via PREDICT do not contain packet payload and many data
sets contain anonymised IP addresses. PREDICT indexes 430
data sets in total, from which 30 data sets belong to class
unrestricted, 284 to class quasi-restricted and 116 to class
restricted. The only unrestricted packet level data source have
been collected in 2003, contain anonymised IP addresses and
do not contain payload. Furthermore, the traces do not contain
explicit per-record class labels. However, an implicit labelling
via data categories might be possible.

The other data repositories are smaller in size and mostly
resulted from specific research questions. Thus, these reposito-
ries serve as good examples of how data sets can be published
together with research papers. The Community Resource for
Archiving Wireless Data At Dartmouth (CRAWDAD) stores
data sources containing wireless network data. The DARPA
Intrusion Detection Evaluation Datasets (DARPA IDEVAL)
[7], [8] have been collected in 1999 and 1998 and are well
known and heavily criticised [9] in our community. Despite
all criticism on the data sets, both data sets are outdated and
do not reflect state-of-the-art attacks seen in contemporary
networks. Hence, using these data sets is not recommended for
contemporary research. The Internet Traffic Archive (ITA) of
the Network Research Group (NRG) at Lawrence Berkley Na-
tional Laboratory (LBNL) contains anonymised traffic captures
and derivatives thereof as well as tools developed for trace
recording and anonymisation. The latest update contributed
to the repository was in April 2008. The Monitoring and
Measurement database (MOME) is a repository of tools and
data of different data providers, comparable to PREDICT.
The Simpleweb Traffic Traces Data Repository indexes data
sets created by the Design and Analysis of Communication
Systems (DACS) group of the University of Twente. The
repository contains anonymised packet header traces, Netflow
records, a Dropbox traffic data set as well as a labelled data set
for intrusion detection. The data sets listed there seem to be
single-effort data sets related to a particular study performed by
the group and, hence, unfortunately do not provide continuous

captures. The labelled data set has been collected using an
active honeypot [10] in 2008. The UMass Trace Repository of
the Laboratory for Advanced System Software of University
of Massachusetts Amherst contains different network related
data sets which are typically anonymised. Finally, the Waikato
Internet Traffic Storage (WITS) project offers packet traces
which typically have IP addresses anonymised using Crypto-
PAn [6] and payload being removed.

As the above discussion of the data repositories listed in
Table I shows, nearly all data sources found in these reposi-
tories show at least one of the following three characteristics
that impact the sources’ utility for network security research:

1) Data sets are anonymised, i.e. sequences of data are
removed or modified in order to eliminate personally
identifiable information (PII).

2) Data sets are static, i.e. they are compiled for a fixed
period of time and may be outdated rather soon.

3) Data sets are unlabelled, i.e. records contained within
the data sets are not attributed according to a-priori
expert knowledge.

In the following subsections, we briefly argue why these
characteristics impact the utility of data sources for network
security research.

A. Anonymisation

Anonymisation approaches are comprehensively discussed
in literature (e.g. [6], [11]–[14]). Typically, anonymisation is
applied to captures of real-world network traffic in order to
remove PII from the traces. This is a necessary pre-condition
for collection and publication of data in most countries and
typically set by current law. Common anonymisation strategies
include modification of IP addresses as well as removal of
payload information. While such anonymised data may be
valuable for specific measurements and statistics, it is typically
of less utility to the network security research community. In
fact, if anonymised data sets do not provide a-priori labels
they typically render themselves useless for network anomaly
detection. Specifically, modification of IP addresses in different
data sources leads to data that cannot be linked across data
sources in order to assign labels. Removal of payload leads to
application layer attacks not being detectable.

B. Timeliness

Data sets collected at one specific point in time will be aged
in later months or years as the attack landscapes constantly
evolve. For instance, the DARPA IDEVAL data sets [7], [15],
two data sets heavily utilised from 1999 to 2005, do not contain
any command and control (CnC) traffic typically found in
today’s malware communication. Hence, these data sets are
of no utility when it comes to design and evaluation of, for
instance, botnet detection systems – solutions countering a
highly recognised contemporary threat. Moreover, even the
statistical value of a one-time data set may be highly limited,
especially when the data set is heavily anonymised, as traffic
patterns constantly change [16].
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Data repository URL

CAIDA http://www.caida.org/data/overview/
CRAWDAD http://crawdad.cs.dartmouth.edu/index.html
DARPA IDEVAL http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
Internet Traffic Archive http://ita.ee.lbl.gov/
MAWI Working Group Traffic Archive http://mawi.wide.ad.jp/mawi/
MOME http://www.ist-mome.org/database/index.html
PREDICT https://www.predict.org/
Simpleweb Traffic Traces Data Repository http://www.simpleweb.org/wiki/Traces
UMass Trace Repository http://traces.cs.umass.edu/index.php/Network/Network
WITS http://wand.net.nz/wits/

TABLE I. DATA REPOSITORIES OFFERING NETWORK TRAFFIC TRACES.

C. Missing Labels

The absence of labels in data sets requires researchers to
manually analyse and attribute data according to phenomena
they try to model and detect, if a supervised approach is
chosen. This has two fundamental consequences for research:
1) Depending on the a-priori knowledge available in different
research groups, outcome of manual labelling may differ
among groups, even when working towards approaches having
the same goal. As a consequence, ground-truth available to
develop and evaluate different approaches may vary and,
consequently, results are not directly comparable. 2) If data sets
are not only missing labels, but also are heavily anonymised,
then a-posteriori assignment of labels is very difficult and
in most cases impossible. Especially the latter phenomenon
effectively diminishes a data sets utility for network security
research.

As a consequence, we assume that the data sets available
and described above suffering from the characteristics detailed
above are currently not heavily used for system design and
evaluation. Indeed, this assumption is reflected by our analysis
of contemporary network security research given in the next
section.

III. ANALYSIS OF CONTEMPORARY RESEARCH

This section presents the results of our review of con-
temporary network security research accepted at top IT se-
curity conferences in the time period 2009 – 2013. In the
remainder of this section we describe our paper and conference
selection strategy (Sect. III-A) as well as our analysis criteria
(Sect. III-B), discuss results of our analysis (Sect. III-C),
draw conclusions from these results (Sect. III-D) and reflect
these conclusions with responses we received from authors
(Sect. III-E).

A. Paper and Conference Selection

In order to understand how our community performs data-
driven analysis, design and evaluation, we analyse work ac-
cepted at highly rated IT security conferences in the years
2009 – 2013. We limit our analysis to those conferences
focussing explicitly on network security or having at least
a dedicated network security track. We orient our selection
on conference rankings provided by Gu et al.1, Microsoft
Academic Research2, the conference impact factor proposed

1http://faculty.cs.tamu.edu/guofei/sec conf stat.htm
2http://academic.research.microsoft.com/RankList?entitytype=3&

topdomainid=2&subdomainid=2&last=5

by Zhou3 as well as Google Scholar4. As a result, we analyse
papers accepted at:

• ACM Conference on Computer and Communications
Security (CCS)

• IEEE Symposium on Security and Privacy (S&P)

• International Symposium on Research in Attacks, In-
trusions and Defenses (RAID)

• ISOC Network and Distributed System Security Sym-
posium (NDSS)

We would like to underline that we neither aim at giving
any particular ranking of the above listed conferences nor that
we aim at discriminating any particular other conference not
listed above. Specifically, we are aware of other high-quality
conferences (e.g. USENIX Security, ESORICS), but at some
point we had to make a cut-off in order for the analysis to be
feasible. We believe that the conferences listed above constitute
a representative sample of top IT security conferences applying
the highest standards in peer-review and quality assurance and,
thus, serve well for an analysis of contemporary network secu-
rity research. Furthermore, we limit our analysis to conference
papers and do not review journal articles, as we have the
impression that in our community new results are preferably
published via conferences and that journal articles are typically
extended versions of results already published in one or more
conference papers. Therefore, we believe that the bias possibly
introduced to our analysis by selecting only conference papers
is negligible.

In total, 793 papers have been accepted at these conferences
in the time period under investigation. From these papers,
we select a subset for review and analysis according to the
following two criteria:

1) Papers have to focus on network security. More
specifically, we do not analyse papers that focus on
host-based or software security (e.g. return oriented
programming, code analysis, etc.) and cryptography.

2) Papers have to utilise network traffic traces for learn-
ing or evaluation. Any paper not relying on captures
of network traffic is disregarded.

As a result of this filtering, we analyse 106 papers, constituting
approximately 13% of papers accepted at the conferences CCS,
S&P, RAID, and NDSS within the time frame 2009 – 2013.

3http://icsd.i2r.a-star.edu.sg/staff/jianying/conference-ranking.html
4http://scholar.google.com/citations?view op=top venues&hl=en&vq=eng

computersecuritycryptography
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Fig. 1. Illustration and interdependence of criteria used to assess the selected
papers.

The papers we analysed are listed in Table II. Again, we
believe that this selection of papers and conferences constitutes
a representative sample of contemporary work and, conse-
quently, our derived results are sound.

B. Analysis Criteria

As focus of our analysis is on understanding which data
sets researchers utilise in order to conduct their work, we
perform our analysis according to different data set related
criteria. The analysis criteria we apply are structured as il-
lustrated in Fig. 1. As top-most criterion, we analyse whether
work is based on real-world or synthetically generated network
traffic. Based on the outcome of this analysis, we analyse
additional result specific criteria. For real-world data, we assess
whether the data set used is manually compiled, provided by
third-parties or is publicly available. Furthermore, we assess
whether the time span of data collection is provided in the
paper and if the data set has been published after work. For
synthetically generated data, we assess whether data generators
or synthetically generated data sets have been published after
work. These criteria are discussed in more detail as follows.
Specifically, we provide and discuss a hypothesis reflecting
our expectations on the outcome of each criterion. Before,
however, we would like to notice that the evaluation criteria are
not necessarily mutually exclusive. For instance, research work
may incorporate both, synthetically generated data as well as
real-world data captures, which both may either be manually
compiled or third-party sponsored.

1) Origin of data: We try to understand where data sets
used in papers are stemming from. More specifically, as top-
most criterion, we analyse whether authors rely on real-world
(C.1) captures of network traffic or synthetically generated
(C.2) data. We define real-world captures as any captures
that contain network traffic emitted by software that has not
specially been crafted to generate traffic for the sake of the
traffic itself. Along this line, we define synthetically generated
data as any data set containing traffic which has been generated
by a computer program that has been developed for the sake
of the traffic itself. Specifically, we regard any data set created
by capturing packets transmitted in a network or by running
malware samples in a sandbox (e.g. [17]–[19]) environment as
real-world captures. In contrast, we define data sets generated
using simulators (e.g. [20], [21]) as synthetically generated.

Hypothesis: A prevalent impression in network security
research seems to be that research results achieved using
synthetically generated network traffic are less predictive of
the utility of a system in real-world environments than results
achieved using real-world traffic captures. We assume that this
impression basically results from the difficulty in simulating

Internet traffic [16]. On the other hand, Ringberg et al. [22]
argue that simulation, and hence data synthesis, is a require-
ment for sound validation of experiments. Yet, to the best of
our knowledge, no studies exist that systematically explore
capabilities and limitations of synthetically generated data in
network security research. As a consequence, we expect most
of the work accepted at the venues above to be based on real-
world evaluation.

2) Real-world data: (C.1) In our analysis, we aim at
assessing where real-world data sets utilised by researchers
are stemming from. As we expect the most work to rely
on real-world captures, we would like to understand whether
researchers leverage publicly available sources, share data
amongst each other or industry, or take the expenses of
manually compiling data sets. Hence, we assess papers relying
on real-world data sets based on the following criteria:

a) Manually compiled: (C.1a) We define manually
compiled data sets as any data set that is collected by
researchers in their own premises or third-party premises.
Furthermore, we define any publicly available or third-party
data set lacking class labels as manually compiled, if and
only if researchers manually generate class labels in order to
annotate the sponsored data.

Hypothesis: Manually compiling and, especially, labelling
data sets is a labour intensive process. Thus, we would expect
researchers to rely on third-party or publicly available data
sets wherever possible in order to be able to focus on the
actual problem at hand instead of data collection. On the
other hand, manually compiling data sets allows researchers to
assure quality of the input data they use for system design and
evaluation. Hence, outcome of research may be more predictive
when manually compiled data sets are used.

b) Third-party: (C.1b) Third-party data sets are defined
as any real-world data set that has not been manually compiled
by the researchers itself, but has been provided by any third-
party. For instance, data sets provided by network operators or
other researchers are regarded as third-party.

Hypothesis: We expect research to heavily depend on espe-
cially industry-sponsored third-party data in order to evaluate
own work. By evaluating own work using industry-sponsored
third-party data, researchers satisfy the prevalent community
belief that real-world data is essential to demonstrate real-
world utility and, thus, validate contribution and impact.

c) Publicly available: (C.1c) Any data set that can
potentially be publicly accessed by researchers is defined
as publicly available. Specifically, we do not require the
data-sponsoring entity to publish a specific data set without
registration or access restriction. However, we require the data-
sponsoring entity to publicly announce the availability of the
data (e.g. in conference papers or on websites) and, if required,
to provide a publicly accessible registration process.

Hypothesis: As mentioned in Section II, different public
data repositories (e.g. CAIDA, PREDICT) exist. Unfortunately,
these repositories usually offer anonymised and unlabelled data
sets. As argued above, utility of such data sets for network
security research may be limited as manual post-processing of
the data is still required, if possible. On the other hand, using
these data sets as starting ground potentially eliminates tedious
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data collection. Balancing these aspects, we hypothesise that
researchers heavily utilise publicly available data as starting
point.

d) Time frame of publication: (C.1d) For all real-world
data sets we analyse whether the time frame of collection is
specified in the papers. By definition, this characteristic can
not be evaluated for synthetically generated data.

Hypothesis: As not only the attack and threat landscapes
are constantly evolving, but also user behaviour is heavily
driven by technical advancement [16], we expect this to be
a commonly provided information.

3) Synthetically generated data: (C.2) The use of synthet-
ically generated data sets allows researchers to easily craft
different data sets during research. Specifically, data can be
tailored to model specific aspects and to evaluate corner-cases
in order to estimate the boundaries of a proposed solution. If
synthetically generated data sets are used in specific work, we
specifically assess whether the process of data synthesis and
parameters of the underlying models are discussed.

Hypothesis: Use of synthetically generated data gives great
flexibility and many degrees of freedom. On the other hand,
as mentioned earlier, we recognise a common mindset in the
network security research community that questions results
achieved using synthetically generated data sets. More specifi-
cally, two arguments against the use of synthetically generated
data commonly encountered are:

• Incompleteness Synthetic data is usually generated by
simulation. Simulation relies on specific models of
real-world. As these models hide specific aspects of
reality in order to be able to terminate simulation in
finite time, synthetic data inherently cannot contain
the variety of subtleties found in real-world.

• Artefacts Synthetic data is typically generated us-
ing simulators and specific models of reality. Con-
sequently, synthetic data shows potential to contain
artefacts, such as periodicity or determinism, that may
not be found in real-world.

Both characteristics of synthetically generated data may nega-
tively impact research. As machine learning (ML) techniques,
which are commonly employed for network anomaly detection,
perform well in learning and recognising similarities in data,
but perform worse in learning and recognising irregularities
[23], ML-based approaches fed with synthetically generated
data sets may be tempted to specifically learn artefacts during
training. As, by definition, these artefacts are not found in
real-world captures, approaches may not perform well in real-
world environments. Similarly, when models are built with
an incomplete representation of reality, approaches may be
confronted with unknown patterns in real-world. Hence, high
false alarm rates may be expected and approaches deduced
from synthetic data may have little utility in real-world.
Consequently, we expect the majority of studies accepted at
the conferences under investigation to not rely on synthetically
generated data sets without incorporating additional real-world
data sets.

4) Publication of data: As mentioned earlier, we regard
availability of labelled data sets as prerequisite for compara-
bility and repeatability of experiments. Hence, we specifically

analyse if data used for design and evaluation of published
research is published as well. To assess this property, we
analyse papers with regard to paragraphs that indicate pub-
lication of data sets or describe a processes how to access
data sets used. Furthermore, we use Google search to find
data sets using the title of the papers as search query. We
denote publication of real-world data sets as criterion (C.1e).
If a paper relies on synthetically generated data, we not only
analyse the publication of the synthetic data corpus (C.2a)
itself, but also for publication of the data generator (C.2b).

Hypothesis: We suppose that importance of data to conduct
research is obvious to any active researcher. We furthermore
argue that well-processed and labelled data sets are a product
of every data-driven research. Hence, publication of data
should be effortless after research work has been accepted for
publication. On the other hand, we recognise constraints that
prohibit public sharing of data. For instance, non-disclosure
agreements (NDAs) may especially prohibit publication of
industry-sponsored data sets due to fear of loss of customers
or reputation. Additionally, data protection law may prohibit
publication of data sets containing sensitive information that
are vital for research (e.g. in case research focusses exactly
on that part of data). Consequently, we expect researchers to
publish data sets after research has been performed. In the
case this is not possible, we expect researchers to discuss
circumstances prohibiting data sharing.

C. Analysis Results

In this section, we present and discuss the results of our
analysis of 106 network security research papers. An overview
of the results of our empirical study is given in Table II.
Specifically, Table II lists the papers reviewed as well as the
cumulative numbers of papers categorised according to the
criteria defined in Section III-B per conference and year. The
last row shows the sum of papers per category for all categories
and over all conferences and years. This summary given in the
last row is the basis of our statistics. From our analysis we
derive four key observations and some curiosities that we will
discuss in the following subsections.

1) Real-world data sets are preferred: As a primary result,
our analysis reveals that research in the network security area
preferably choses real-world captures of network traffic instead
of synthetically generated data. Specifically, 88% (93 of 106
papers) of the investigated papers accepted at the conferences
mentioned above used real-world captures for learning or
evaluation. In contrast, only 16% (17 of 106 papers) of the
papers we analysed leveraged synthetically generated data.
Interestingly, 10 of the 17 papers utilising synthetic data relied
on synthetic data only, i.e. did not use additional real-world
data sets. Hence, only 9% (10 of 106) of all papers under
investigation did not use real-world data to conduct their work.
This statistic follows our initial hypothesis that we expect
research to be based on real-world data. We are convinced that
this figure underlines our speculation of the current mindset of
our community, that research based on synthetic data does not
guarantee utility in real-world.

2) Researchers tend to manually compile data sets: From
the work based on real-world captures, 44% (41 of 93) utilised
third-party sponsored data sets. In contrast, 70% (65 of 93)
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Conf. Year C.1 C.2 C.1a C.1b C.1c C.1d C.1e C.2a C.2b Papers

CCS

2013 5 2 4 4 2 3 0 0 0 [24]–[29]
2012 3 1 2 1 0 2 0 0 0 [30]–[33]
2011 4 0 4 1 0 2 0 0 0 [34]–[37]
2010 1 1 1 0 0 0 0 0 0 [38], [39]
2009 3 0 3 0 1 1 1 0 0 [40]–[43]

S&P

2013 1 1 1 1 0 0 0 1 0 [44], [45]
2012 2 0 2 0 0 0 0 0 0 [46], [47]
2011 3 0 2 2 1 2 0 0 0 [48]–[50]
2010 8 3 7 5 4 4 0 1 0 [51]–[59]
2009 8 1 3 2 2 6 0 1 0 [60]–[66]

RAID

2013 6 0 2 3 5 3 1 0 0 [67]–[73]
2012 5 0 4 2 0 1 0 0 0 [74]–[78]
2011 4 0 4 0 0 4 1 0 0 [79]–[83]
2010 8 3 7 5 4 4 1 1 0 [84]–[93]
2009 8 1 3 2 2 6 0 1 0 [94]–[102]

NDSS

2013 9 1 8 5 1 5 0 0 0 [103]–[112]
2012 3 0 2 1 0 2 0 0 0 [113]–[115]
2011 5 1 4 2 1 2 1 0 0 [116]–[120]
2010 4 1 1 3 3 4 0 0 0 [121]–[124]
2009 3 1 1 2 1 1 0 0 1 [125]–[129]

Σ 93 17 65 41 27 52 5 5 1 106
TABLE II. RESULTS, IN NUMBER OF PAPERS, OF THE ANALYSIS WE CONDUCTED ON 106 RESEARCH PAPERS ACCORDING TO CRITERIA DEFINED IN

SECT. III-B. THE PAPERS WE ANALYSED PER CONFERENCE AND YEAR ARE LISTED IN THE RIGHTMOST COLUMN.

of papers relying on real-world captures utilised manually
compiled data sets for learning or evaluation, leading to
the conclusion that researchers preferably compile data sets
themselves. This result is especially interesting as compiling
real-world data sets is a time-consuming task. On the other
hand, it underlines the difficulty of obtaining real-world data
sets from industry. Non-surprisingly, the most commonly ref-
erenced sources for manually compiled data sets are sandboxes
or sandnets and the university or working-group network.

3) Publicly available data sets are not leveraged: Our anal-
ysis shows that publicly available data sources are leveraged
by only 29% (27 of 93) of the papers we studied. This is
a very interesting result contradicting our initial hypothesis.
We assumed that research would heavily make use of publicly
available data sets as these data sets enable rapid start of
research. From the results of our analysis we conclude that
the lack of class labels for publicly available data sets is an
even bigger show stopper than expected. This is presumably
amplified by anonymisation of public data, leading to missing
sequences or sequences that cannot be linked with other
data sources. Thus, post-processing publicly available data
(e.g. assigning class labels) is apparently more expensive than
compiling an entirely new data set.

4) Data sets are not published: One astonishing result
of our survey is that the network security research com-
munity seems to be particular reserved when it comes to
data publication and sharing. Our analysis of papers accepted
at top IT security conferences reveals that only 5% (5 of
93) of real-world data sets used to conduct research were
released after acceptance of the work. Results are slightly
better for synthetically generated data sets. In 35% (6 of 17)
of papers utilising synthetic data, the data set itself or the data
generator was published after work has been accepted. In total,
however, only for 10% (11 of 106) of the papers we analysed
data has been published. This strongly contradicts our initial
hypothesis that researchers usually publish their data after the
corresponding work was accepted for publication. Even more
surprisingly, only a negligible fraction of the papers explained

why data sets could not be published.

5) Curiosities: In addition to our four observations that our
analysis of contemporary network security research reveals, we
found two interesting curiosities which we discuss next.

a) Unknown origin: We found that 6 of 106, i.e. almost
6%, of the papers we analysed did not reveal any information
on the underlying data set. During our analysis, it was either
unclear whether synthetic or real-world data had been used
or where real-world data was stemming from, i.e. whether
it was manually compiled, third-party sponsored or publicly
available. We regard this as a very serious curiosity if we re-
member that the conferences under investigation are commonly
regarded as top venues.

b) Reporting of time frame: Along that line, our anal-
ysis reveals that only 56% (52 of 93) of the papers relying on
real-world data published the time frame during which data had
been acquired. We are puzzled by this result as on one hand,
reporting the period of collection is neither expensive in terms
of numbers of lines to be devoted, nor in terms of time required
to report. On the other hand, specifying the time frame during
which data was acquired effectively helps to assess research
results at a later point in time. As vulnerabilities, attacks
and tools as well as human Internet behaviour are constantly
changing, we regard it as a fundamental requirement of any
data-driven research to reveal the time span of data acquisition.
As this number is rather high, our only explanation for this
observation is that publication of time frames is currently not
mandated by reviewers and, hence, seems not to be a prevalent
requirement for sound experiments in our community.

D. Analysis Conclusions

From the analysis results presented above, we draw two
main conclusions:

1) Data sharing shortcoming: Section III-C2 shows that
researchers in our community tend to manually compile their
data sets for system design. External data sets are typically
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included for later evaluation. However, data sets are typically
not publicly released together with the publication as showed
in section III-C4. We are particularly astonished by this result,
as any active researcher should understand our community’s
demand on available data sets. When speculating about this
issue, we come down to two possible reasons related to a
researcher’s mindset. We continue to describe these reasons
in a notion of stereotype researchers:

a) The restricted researcher: We regard current law
of most jurisdictions as one fundamental driver of scarce
data sharing amongst researchers. This holds especially true
if data utilised for research is third-party sponsored or based
on any real-world captures. In such cases, data privacy law
usually restricts the researcher’s capability of sharing data. If
in such cases data sharing is possible at all, researchers are
typically required to additionally process data in order to make
it conform to law or contractual requirements (e.g. extensive
anonymisation of data). We assume that this additional effort
is typically not recognised as added value or, more specifically,
that a researcher cannot predict the added value of releasing a
data set, usually measured in citation count of a paper, at the
time of taking the additional efforts.

b) The competing researcher: As mentioned earlier,
manually compiling data sets is a very time-consuming process
which may require several months or even several years of
active work. For instance, if data has to be captured in real-
world networks, technical details have to be discussed with
operationally responsible peers, contractual (especially NDA-
related) details have to be negotiated, data collectors have
to be placed, and data has to be manually post-processed
in order to remove noise and assign class labels. And most
importantly, collection has to be conducted for a sufficiently
sized period of time in order to compile a representative
data set. Once finished, however, the resulting data source
potentially reflects as substrate of very detailed and focussed
research, contributing to the reputation of the data owner. As
research is a competition on novel ideas and solutions and our
community faces intensive career pressure, researchers having
access to data sets with limited public accessibility have a clear
competitive advantage.

Any of the two cases lead to a shortcoming of data sharing.
In combination with a lack of publicly available labelled data
or non-linkable publicly available data, as discussed in Section
II, this shortcoming consequently leads to a problem we call
the missing labelled data problem.

2) Missing labelled data problem: The shortcomings of
public data repositories (cf. Section II) and the lack of pub-
lished data sets, as confirmed by our analysis in Section III-C4,
combined with the previously mentioned data sharing short-
coming leads to a lack of publicly available ground-truth data,
i.e. labelled data. This absence of ground-truth data negatively
affects comparability and repeatability of results and, as such,
contradicts fundamental principles of science. Furthermore, as
for every researcher digging into a new problem domain the
expensive acquisition of data sets becomes a prerequisite for
successful work, the absence of ground-truth data specifically
hinders rapid research and, thus, scientific progress in our com-
munity. Hence, our community faces an intrinsic challenge. In
order to be able to frame the dimensions of this challenge, we

aim at explicitly defining the missing labelled data problem as
follows:

Definition. The missing labelled data problem is the prob-
lem of not having access to labelled data sets of adequate
quality and utility with respect to the problem to solve at time
of problem solving.

Our definition reflects the following four dimensions that
we derive from our analysis of public data repositories and
research work:

a) Access to data: As mentioned earlier, one issue lies
in the availability of ground-truth data. As publicly available
data sets typically do not contain labelling information and
only a small fraction of researchers is able or willing to publish
data sets, the availability of ground-truth data is limited.
However, publicly available ground-truth data sets are required
in order to fulfil scientific principles, such as comparability and
repeatability of research. If no common ground for analysis
and evaluation is available, research results are in fact not
comparable and work can not be repeated. And if research
is not repeatable, new approaches can not effectively build
upon previously published results. Consequently, research is
self-contained within research groups and work of different
groups is performed in parallel instead of being sequential.

b) Quality of data: Quality of data is commonly ex-
pected to be predictive of an approach’s utility in real-world.
Hence, quality of data is interchangeable with reality of data.
If the data at hand is expected to be a representative sample of
reality, i.e. if data is expected to be realistic, results achieved
when using the data for evaluation are expected to be achieved
in real-world environments as well. As consequence, quality of
data serves as a measure of transferability of research results.
Hence, quality is an important aspect of ground-truth data.

c) Utility of data: By intuition, we expect that ground-
truth data sets can not reflect every single aspect of reality.
As such, different ground-truth data sets for different problem
domains, or even within one and the same problem domain,
are required. In order to be able to assess impact of research
conducted on a specific ground-truth data set, it is important
to understand the coverage of the data set. Hence, we see a
specific requirement of ground-truth data sets in the proof of
utility of data for a given problem domain. Proof of utility of
data for a specific problem to solve is a prerequisite for any
further conclusions.

d) Timeliness: One limiting characteristic of existing
publicly available data sets is that data sets are usually static,
i.e. data sets are typically captured for a specific period of time
and afterwards released. However, reality constantly moves and
patterns change. For instance, as attacks and threats constantly
evolve, network attack patterns change over time. Botnets, as
one example, are a consequence of such evolution. While bot-
nets pose a prevalent threat to our today’s infrastructure, botnet
CnC traffic was not present 20 years ago. Hence, data sets
collected at that time are useless for research of botnet coun-
termeasures. Consequently, one challenge and requirement of
ground-truth data is its continuous development. In order to
address this, next to a ground-truth data set, methodology of
data collection has to be discussed in publications and tools
required for data collection have to be published.
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E. What the authors say

In order to gain more insight into the problem and to
reflect our conclusions, we considered surveying a sample of
the authors whose paper we reviewed during our analysis.
Specifically, we were interested in surveying why authors
deliberately decided to release data sets and why not. However,
we were particularly unsure how to survey those authors that
not released data. Especially, we expected those answers, if
received at all, to refer to sensitivity of information collected
in a specific restricted-access context and, particular, to NDAs
and legal requirements. Indeed, we got similar answers in
prior work when we performed experiments that we wanted
to compare. Unfortunately, we would not have been able
to assess these answers. Particularly, we assume that we
would not have been able to judge whether the answering
author is of restricted researcher or of competitive researcher
stereotype, which would have given interesting insight into our
community. We are currently unsure on how to frame such
survey best and leave that part for future work.

Nevertheless, we decided to reach out by email to all
authors of those papers that published data sets. We presented
the authors a brief summary of key results of our analysis and
asked to briefly explain why they chose to publicly release the
data set. Actually, two authors responded as follows:

• Overall, we thought that while many malware reposi-
tories are available, there was a real need for (largely)
labeled malware datasets. Hopefully, other groups
can use it to evaluate their malware classification
techniques.

• We shared the data because: 1) There aren’t enough
security datasets available so security research is not
very repeatable. We felt that this gap needed to be
bridged. 2) The privacy laws in [...] were relaxed so
it was easier to share the datasets after anonymization.

Interestingly, the responses exactly stress that our commu-
nity, while having various publicly accessible data repositories,
is missing labelled data sets and that, without such data sets,
research is not repeatable. Both aspects are in line with our
argumentation and analysis results. Hence, even if the sample
size is small, this result fully supports our conclusions. Also,
we find it particular interesting that one of the respondents
explicitly mentions the causality between privacy law and
ability to release anonymised data. While an analysis of this
causality, and especially implications thereof, is not covered in
this paper, we regard it as highly interesting research question
for future work.

IV. OVERCOMING THE PROBLEM

From Sect. III we conclude that our community inherently
faces the missing labelled data problem. If data sets for
research are unavailable, experiments can not be repeated
and results or claims can not be verified. Additionally, future
work can not be evaluated using the same data set. Hence,
different results achieved in work with similar objectives are
not comparable. While we recognise this as an inherent prop-
erty of our domain, it fundamentally contradicts principles of
science. Consequently, our community has to develop solutions
in order to not loose credibility over time. In the remainder

of this section, we present and discuss three complementary
approaches as a step towards this direction.

The approaches we discuss here have as well been pro-
posed in different work by others (cf. discussion of related
work in Section V). However, from our analysis we conclude
that our community has not significantly changed since. We
can only speculate why this is the case, but we believe that it
is due to the intrinsic difficulty of the problem we describe in
this paper.

Additionally, we would like to note that we are aware
that the problem we discuss in this paper and the possible
approaches towards overcoming it are not necessarily unique
to network security research or computer science in general.
However, we regard ourselves as experts in network security
only and hence hesitate to generalise from our observations
in this community. Nevertheless, we are convinced that the
missing labelled data problem is especially prevalent in net-
work security research as, from our experience, people are
increasingly becoming aware of sensitivity of network data;
which is a good development demonstrating some success in
our field on one hand, on the other hand making sound data-
driven network experiments even harder.

A. Establishing ground-truth

In order to address the lack of ground-truth, research has
to focus not only on solving prominent problems, but also on
generating common ground-truth data sets. That is, research
has to accept missing labelled data sets as a problem of
itself. For the conferences under investigation in this paper,
compilation of ground-truth data had not been listed in the
latest calls for papers. From this observation we conclude that
working towards this direction is not heavily recognised in our
community and, consequently, less attractive for researchers.
From a scientific and, specifically, methodological point of
view, however, that kind of research is of great value to the
community. Hence, work on ground-truth should become one
central topic of interest for relevant IT security conferences in
order to stimulate research.

Work towards compilation of ground-truth can comprise
the following aspects:

1) Real-world captures: Capturing, post-processing and
publishing real-world traffic is a challenging effort. In order
to assure that traffic is not biased by behaviour of a specific
user group (e.g. behaviour of IT security specialists being
connected to the working group network), traffic has usually to
be collected on more central points in the network [23]. This
essentially requires much communication with operationally
responsible peers within the own or within other organisations
until formal requirements are met and technical issues can be
tackled.

Probably most challenging in that direction is finding an
anonymisation tradeoff between legal or contractual require-
ments and utility of data sets. As shown in Section II, heavily
anonymised data sets which are not labelled are available.
Our analysis results in section III-C3, however, show us that
such data sets can hardly be leveraged by our community
as the data can not easily be linked to other sources and,
hence, labels can not be easily derived. Finding appropriate
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anonymisation techniques that satisfy both, the requirements
of our community and those of the data sponsoring party is
challenging. Especially, data providers’ trust in such techniques
may be undermined by publications demonstrating effective
data leakage due to attacks on the anonymisation technique
[130].

Additionally, such approaches should ideally work towards
a continuous data capturing platform in order to be able to
continuously track changes of network traffic patterns and to
be able to access a representative sample at every point in
time. As discussed in Section II, this is a fundamental issue of
most data sets that have been crafted for one specific research
project. Moreover, being able to provide a constant stream of
labelled data would effectively stop overstudy of data sets or
publication of irrelevant results on outdated data sets, as seen
in case of the DARPA IDEVAL data sets.

By definition, a continuous data capturing system deployed
at representative sites in real-world would theoretically address
all dimensions of the missing labelled data problem given in
Section III-D2 and, consequently, would solve the problem.
However, we are aware that it is a long road towards this
direction, if possible at all. Nevertheless, research towards
this direction is valuable and should especially focus on
methodology. The more we can learn on how to securely design
such systems, how to technically bridge the gap between
anonymisation and utility and how to sociologically solve
privacy concerns, the faster we can proceed. Literally, at the
time of writing, we are convinced that the emphasis is on ’how’
to sensibly capture and provide data, i.e. methodology, and not
on the data capture itself.

2) Synthesis software: As mentioned above, utility of syn-
thetically generated data is often challenged in our community.
Consequently, our analysis in Section III-C1 shows that only
16% of papers under review utilised synthetically generated
data. However, to the best of our knowledge, it is yet unproven
that synthetically generated data cannot be used to draw
valid conclusions. We are convinced that it is possible to
build efficient and effective anomaly detection systems that
perform well in real-world. Hence, developing a data synthesis
toolchain and assessing utility of data generated using these
tools reveals as important future work. In fact, Ringberg et al.
[22] and Sonchak et al. [131] argue that synthetically generated
data is indeed a requirement for performing repeatable network
security experiments. In any case, if in an ideal world a data
synthesis tool can be generated that is capable of generating
traffic samples of high quality and utility, the missing labelled
data problem can effectively be solved for the domain ad-
dressed by this tool.

However, the challenge of assessing the quality of synthet-
ically generated data remains. One straightforward approach
is to perform statistical tests. If synthetically generated data
equals real-world captures with regard to statistical distribution
of key aspects of the problem domain, probability is high
that (statistical) learners being trained on synthetically gen-
erated data sets work well on real-world data sets as well.
As an alternative, existing learners published in the problem
domain of interest (e.g. classifiers) can be used to assess
quality of synthetically generated data. If learners showing
high performance on real-world data are capable of detecting
events in synthetically generated data and vice versa, we

can conclude that the synthetically generated data reflects
our current understanding of reality. Obviously, however, the
disadvantage of these two approaches is the dependency on
real-world data, leading to a recursive problem. The advantage,
on the other hand, is that those having access to real-world
data would be able to derive synthetically generated data sets
that can freely be shared without restrictions, increasing the
availability of data in our community.

Nonetheless, we are aware and specifically want to high-
light that utilising synthetically generated data sets is just
the next best approach compared to real-world data. How-
ever, we are convinced that publicly accessible synthetically
generated data sets and synthesis toolchains can not only
greatly increase comparability and repeatability of network
security research, but also foster our understanding of network
traffic patterns. In any case, we would like to remind and
encourage our community to study capabilities and limitations
of synthetically generated data as well as methodology of data
synthesis. If, after intensive research, our community comes to
the conclusion that we can not establish protocols that support
effective and efficient sharing of real-world data, we have to
live with the second best approach and accept synthetically
generated data as ground-truth.

3) Labelling public data: As our analysis and discussion
of data repositories in Section II shows, different publicly
available data sources exist. However, class labels describing
specific characteristics of the data records are usually missing.
This correlates with our observation in Section III-C3 that
publicly available data sources are rarely utilised in network
security research. Specifically, to the best of our knowledge,
the only contemporary data sets providing labelled data records
with emphasis on intrusion detection evaluation are provided
by Sperotto et al. [10] and Song et al. [132]. However, these
data sets have both been collected utilising active honeypots.

One valuable approach in compiling a common ground-
truth, thus, would be to focus on exactly filling this gap of
missing labels. Hence, researchers should focus on generating
and publishing class labels for already existing data sources
as this would unleash the full utility of already ongoing data
collection efforts. Additionally, doing so would release from
the burden associated with manual collection of data and
allows for rapid advancement and supports comparability of
research.

Furthermore, we would like to note that labelling publicly
available data sets also comes without costs when data sets
are utilised for research anyway. As shown in Section III-C3,
29% of the papers we reviewed utilised publicly available
data sets. If labels would have been released afterwards, these
studies would have contributed to solve the missing labelled
data problem our community is facing. At that time, we can
only speculate about the reasons not to release such labels and
come to the conclusion that the lack of labelled data and the
contribution the authors could have made to the community
is virtually not present to the authors as our community as
a whole has not fully internalised the problem. Again, from
this we conclude that formalising and discussing the missing
labelled data problem, as we do throughout this paper and
particularly in Section III-D2, is essential in order to overcome
it.
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B. Indexing data

In order to solve the missing labelled data problem, ful-
filling the requirement of access to data, as described in
Sect. III-D2, is essential. One step towards that direction is the
establishment of a common data sharing platform which can
be used to uniquely index data sets, comparable to the digital
object identifier (DOI) system. Such data indexing serves two
goods:

1) Referencing of data. By assigning unique identifiers
to data sets published in a data sharing platform, data
sets can uniquely be referenced. Hence, data sets can
easily be integrated in literature and it will be trivial
to look up specific characteristics of data sets.

2) Availability of data. Alongside with indexing, data
sets should be reliably stored in the data sharing plat-
form. Thus, data sets will be available and accessible
for long time spans, making not only research more
comparable and transparent, but also supports other
research areas, such as the systematical analysis of
evolution in our community.

From the data repositories listed in Section II, especially
CAIDA, PREDICT and MOME aim at providing such a
platform. Both data repositories, PREDICT and MOME, list
various data sets (and, for MOME, even tools) of different
data providers while CAIDA basically provides access to
own data of affiliated institutes and universities. However,
there’s a significant overlap between the data repositories.
Especially, PREDICT lists a significant proportion of data sets
also available in the CAIDA repository. The problem we see
here is that neither of these repositories aims at developing a
unique and standardised naming scheme. Even worse, neither
procedures to access restricted data, nor naming of data classes
and data sets is identical in all cases. This variability is
confusing, especially to new researchers in our community, and
should be removed by defining and agreeing on a community
standard in data set naming, attributing and indexing.

We are aware that having a data indexing platform is
worthless if we are missing appropriate data to index. Hence,
we regard establishment of such a data indexing platform as
complementary to establishment of ground-truth, as discussed
in Section IV-A. On the other hand, as described previously,
we already have a significant amount of (unlabelled) data sets
available in our industry that would highly benefit from being
uniquely indexed by and accessible via such a platform.

C. Incentivising the researcher

Probably the most important, and even most challenging
step towards overcoming the missing labelled data problem
is incentivising the researcher. As derived in Section III-D1,
we consider two stereotype researchers describing the intrinsic
motivation and mindset found in our community. While we
have no formal proof for these stereotypes to correctly reflect
all individuals within our community, we nevertheless believe
that it broadly characterises the majority of researchers. When
discussing these stereotypes with colleagues, they invariably
were able to agree.

The stereotype restricted researcher, as discussed in Sec-
tion III-D1, may be willing to publish his data sets but may be

restricted due to outer constraints, the competing researcher in
contrary may be able to share, but is unwilling to do so. Hence,
the restricted researcher may be intrinsically motivated, while
the competing researcher may not. One approach to motivate
both researchers even stronger is to incentivise publication of
data, i.e. to extrinsically motivate researchers until publication
becomes a matter of course. One way of achieving this would
be to mandatorily demand release or specification of at least
one data set or, if synthetically generated data has been used,
parameters required to generate data for validation of research
alongside with paper submission for all top-ranked publication
platforms. This proceeding effectively enforces comparability
and repeatability of research and, hence, essential principles
of scientific work. Furthermore, it enables the community to
incorporate insight from previous work into new work much
stronger, even across different research groups, and, thus,
allows us to systematically and sequentially solve problems
instead of working in parallel, as discussed in Section III-D2.

Ideally, in case of release of new data sets, data sets
should be submitted to data sharing and indexing platforms (cf.
Section IV-B) and linked to the paper under submission. We
believe that such requirement would initiate reconsideration
of paper design, especially of data sets used for evaluation of
work. In the long term, this proceeding effectively eliminates
the missing labelled data problem we are facing thus far. As the
time of writing, however, we are not aware of any conference
or journal in network security research mandating researchers
to specify one publicly accessible reference for repetition of
experiments and comparison of results or otherwise incen-
tivises researchers to publish data. On a step towards this
direction, ACM Internet Measurement Conference (IMC) is
offering a dedicated award for papers contributing novel data
sets. Similarly, USENIX Symposium on Networked Systems
Design and Implementation (NSDI) offers a community award
for the best paper publishing its data and/or code. We propose
to adopt similar awards for key network security venues.

We are aware that forcing researchers to specify a publicly
accessible data source in order to repeat research and compare
results in conjunction with an accepted paper would severely
affect our community. Nevertheless, we are convinced that
this proceeding is effective in overcoming the issues arising
from the missing labelled data problem ware are facing today.
Specifically, we would like to note that we do not insist
in mandating researchers to publicly release private/restricted
data sets in general. As mentioned throughout this paper, we
are well aware and understand constraints that prohibit such
data release. However, we propose to mandate researchers
to give reference to one publicly accessible data set that, in
addition to the private/restricted data set, has been used to
evaluate the system proposed in a research paper in order
to give fellows the possibility to repeat experiments and
compare results. Such mandate simply causes the researcher
to take the burden of additional efforts of labelling publicly
available data sets, crafting a synthetically generated data set
or specifying parameters used by an established data generator
to synthesise data sets. We believe that this burden is feasible
and especially is outweighed by the long-term benefit to the
community. Moreover, we predict that the burden of such
mandate monotonically decreases when time elapses, as, after
a while, a significant amount of reference data would be
publicly accessible by definition. In a significantly lowered
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version of the above, major conferences could introduce
special data sponsoring papers sessions. To these sessions,
the above requirements should be applied and only papers
fulfilling the criteria mentioned above should be considered for
acceptance. Hence, such sessions would specifically incentivise
papers that focus on contributing data sets and data collection
methodology and would explicitly raise broad awareness for
the problem, which, as described in Section IV-A, seems
currently not to be the case.

On a different location in the continuum, data sharing can
practically be incentivised by the data providers. Specifically,
we propose data providers to release data sets together with
a well-crafted usage codex which especially enforces that la-
belling information is fed back to the data providers and linked
to the data set. When analysing the data repositories mentioned
in Section II, we find that data providers typically restrict usage
of data (e.g. data sets may not be used to perform research
targeting at breaking anonymisation strategies employed) and
require researchers to link to a specific paper describing the
data collection process. Furthermore, some data providers
regularly ask researchers for published work utilising data sets
found in their data repositories in order to have that work
listed on the data provider’s websites (e.g. CAIDA, PREDICT).
However, for the repositories we analysed, we did not find any
data usage codex requiring researchers to submit information
that enrich the publicly accessible data sets. In prior work
[133], we propose such codex our community should adhere to.
Citing one rule of that codex, we ask that researchers should
publish the results they achieved when utilising a specific set
of data. Specifically, the results should be re-submitted to the
data providing organisation and should be linked, together
with a reference to the research work, online together with the
data set [133]. Requiring such codex effectively contributes to
establishing ground-truth by labelling public data as proposed
in Section IV-A3.

V. RELATED WORK

To the best of our knowledge, no similar comparative
study of data sets utilised in network security research has
been conducted so far. As data is highly relevant to our
community, we therefore believe that the epistemological work
we present here is justified. Comparable to our work in spirit is
a comparative analysis of malware samples utilised in malware
research by Rossow et al. [134]. In this study, 36 academic
publications on malware analysis in the time frame 2006 –
2011 have been analysed. Amongst others, the paper identifies
shortcomings in transparency, realism and methodology for a
significant amount of analysed publications. While this paper
analyses malware data sets used, whereas we focus on network
traffic captures, the results of [134] are comparable to our
results and indicate that our community is facing issues in
performing scientific sound experiments.

Recent work supporting our line of argumentation and
conclusions in earlier sections is presented in [130], [131],
[135]–[140]: Ethics and issues of sharing measurement data
have been discussed by Allman and Paxson [130]. Specifically,
[130] provides considerations for data providers as well as data
receivers. However, the usage codex proposed in [130] gives
no recommendation for returning supplementary information
to the data providers. We especially regard this as an easy and

effective way of data sharing. A discussion and classification
of different data available to and required by our community
is given by Heidemann and Papdopoulos in [135]. Back in
2009, the authors formulated our community’s requirement on
annotations and metadata as future research topic. Our work
underlines this requirement and quantifies the demand and
degree of data sharing. Also, our analysis demonstrates that
our community has not significantly evolved with regard to
data sharing and availability of labelled data within the last
5 years. This is also underlined by work of Sonchack et al.
[131] and Ringberg et al. [22]. In [131], the authors discuss the
need of labelled data for evaluation of large scale collaborative
intrusion detection systems in order to perform repeatable
experiments. To bridge this data gap, Sonchack et al. propose
a data synthesis approach called parametrised trace scaling,
which aims at expanding small real-world traffic samples to
generate large and realistic data sets. In [22], the authors
argue that synthetically generated data is required in order
gain experimental control and to be able to repeatedly evaluate
intrusion detection systems. Specifically, the authors argue that
synthetic data should be used for training and evaluation and,
afterwards, systems should be verified in real-world. However,
the use of static data sets for intrusion detection system
evaluation - especially if data is synthetically generated - is
also challenged in our community. In [9], McHugh intensively
criticises methodology and results of the DARPA IDEVAL
data sets [7], [8]. In fact, for these data sets we have seen
how research has been tuned to the data sets, data sets have
been overstudied and systematic deficiencies of data sets can
render research results useless. Nevertheless, this approach
has heavily stimulated research activity in our community and
contributed a lot to the evolution of our community. For future
work, we have to incorporate lessons learned from the DARPA
approach and especially have to make sure that labelled data
sets are continuously compiled, as proposed in Section IV-A.
If we achieve to continuously compile realistic data sets, the
necessity of relying on old and overstudied data sets vanishes
and technical program committee members have a profound
argument to withdraw work that is tailored to data sets or
based on arbitrarily old data. In [136], Kenneally and Claffy
discuss privacy issues in data sharing and propose a privacy-
sensitive sharing (PS2) framework. Specifically, the authors
emphasise the need of network traffic data for empiric studies
and attribute especially industry hesitation to the challenge in
balancing advantages and disadvantages of data sharing due to
different legal regimes and flawed technology models. With the
PS2 framework, [136] provides a viable guideline and demon-
strates its utility in the CAIDA use case. Further approaches
describing data acquisition and PII-removal methodologies and
challenges are described in [137]–[140]. One of the most
prominent and heavily used IP address anonymisation schemes
called Crypto-PAn is described in [6]. This scheme proposed
by Xu et al. is prefix-preserving, i.e. if two anonymised IP
addresses j′ = f(j) and k′ = f(k) coincide with the first n
bits, then the first n bits of the original IP addresses j and
k are equal, too. Crypto-PAn is based on cryptographic hash
functions. Indeed, the author demonstrates that the scheme is
cryptographically strong.
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VI. SUMMARY AND CONCLUSION

Research in the area of network security is heavily data-
driven. Especially, in our daily work we observed that our
community heavily relies on the availability of a-priori labelled
data. As we experienced in own work, such data is hard to
find. Indeed, an analysis of data repositories we performed
shows that publicly accessible labelled data sets is a rare
good. For inherently empirical studies, this observation is quite
idiosyncratic. On one hand, data is a necessity in order to
perform empirical studies and to be able to publish results.
Given the number of empirical studies our community pub-
lishes per year, we conclude that such data indeed exists. On
the other hand, finding publicly accessible labelled data sets is
nearly impossible. From that observation, we hypothesise that
our community does not share data sets. In order to be able
to accept or reject this hypothesis, we perform a systematic
study of 106 network security research papers accepted at
CCS, S&P, RAID and NDSS conferences in the years 2009 –
2013. As a result of our analysis, we find that the majority,
i.e. 70%, of the papers we review relies on manually compiled
data sets. Furthermore, our analysis reveals that only a very
small fraction, i.e. 10%, of the papers we analyse release
data sets or data generators after compilation. We also notice
that a significant amount of work we review, i.e. 44%, tend
to utilise external data sets from industry, which are not
released either. Interestingly, a surprisingly small fraction of
the investigated papers, i.e. 29%, utilise existing public sources
containing network traffic. From that analysis, we have to
accept our hypothesis and conclude that our community is
facing a missing labelled data problem. To the best of our
knowledge, we are the first to quantify this severe issue of our
community by empirical analysis of contemporary research. In
order to be able to frame the problem our community is facing,
we derive a definition of the missing labelled data problem
and discuss its crucial dimensions. Furthermore, we propose
different research areas and challenges towards establishment
of ground-truth and propose to establish a common data
sharing and indexing platform. Furthermore, we propose how
to incentivise researchers to publish and share data.

While we are aware that some of our proposals are rigorous
and would severely affect methodology in our community, we
deliberately chose to bluntly formulate them. We are convinced
that these proposals have the potential to contribute to and
stimulate an active discussion in our community. We are
aware that similar issues exist in other academic sciences.
As computer science is a particular young discipline, we
propose to learn from more matured disciplines. Specifically,
we are aware that approaches to overcome the missing labelled
data problem comparable to those raised by us are currently
established in other disciplines of science. For instance, the
Nature journal5 requires authors to share and submit their
complementary data. Similar requirements can be found for
publishing in Science6 and the Oxford Journal of Heredity7.
From that observation, we conclude that an elaborate dis-
cussion of this phenomenon in our community is satisfied.
Especially, we recognise and want to point out that absence

5http://www.nature.com/authors/policies/availability.html
6http://www.sciencemag.org/site/feature/contribinfo/prep/gen info.xhtml
7http://www.oxfordjournals.org/our journals/jhered/for authors/msprep

submission.html

of data, on which empirical analysis is based on, contradicts
basic principles of science. Specifically, unavailability of data
hinders repeatability of research and comparability of results.
While we are well aware and understand constraints that limit
general availability of data, as a community we nevertheless
have to take care of maintaining a scientific approach in order
to not loose credibility over time. Especially, notwithstanding
healthy competition and career pressure, we have to make sure
that the competing researcher mindset we discussed in this
paper does not become prevalent. We are tempted to claim that
this is as important to our community as solving the everyday
security issues we’re facing.
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Abstract—This paper proposes a cognitive method with the
goal to get end users into the habit of checking the address
bar of the web browser. Earlier surveys of end user behavior
emphasized that users become victims to phishing due to the
lack of knowledge about the structure of URLs, domain names,
and security information. Therefore, there exist many approaches
to improve the knowledge of end users. However, the knowledge
gained will not be applied unless end users are aware of the
importance and develop a habit to check the browser’s address
bar for the URL structure and relevant security information.

We assume that the habit of checking the bar will improve
educational effect, user awareness of secure information, and de-
tection accuracy even in the case of sophisticated phishing attacks.
To assess this assumption, this paper conducts a participant-based
experiment where 23 participants’ eye movement records are
analyzed, and observes that novices do not tend to have the said
habit. We then consider a way for them to acquire these habits,
and develop a system which requires them to look at the address
bar before entering some information into web input forms. Our
prototype named EyeBit is developed as a browser extension,
which interacts with an eye-tracking device to check if the user
looks at the browser’s address bar. The system deactivates all
input forms of the websites, and reactivates them only if the user
has looked at the bar. This paper shows the preliminary results of
our participant-based experiments, and discusses the effectiveness
of our proposal, while considering the potential inconvenience
caused by EyeBit.

Keywords—Phishing, Cognitive Psychology, Eye-Tracking

I. INTRODUCTION

Phishing is a fraudulent activity defined as the acquisition
of personal information by tricking an individual into believing
the attacker is a trustworthy entity [1]. Phishing attackers lure
people through the use of a phishing email, as if it were sent
by a legitimate corporation. The attackers also attract the email
recipients to a phishing site, which is the replica of an existing
web page, to fool them into submitting personal, financial,
and/or password data.

There have been many participants-based studies to un-
derstand decision patterns of end users while the fundamental
problem in phishing is the fact that they are deceived. Accord-
ing to Dhamija [2], some participants do not look at browser-
based information such as the address bar, the status bar or
the security indicators, leading to incorrect choices 40% of

the time. Instead, they consider various other criteria while
assessing a website’s credibility.

In our previous work [3], we asked 309 participants the
reason of their decision. The participants browsed 14 simulated
phishing sites and six legitimate sites, judging whether or not
the site appeared to be a phishing site, and answered the reason
for their decision via a questionnaire. The results showed that
experts tended to evaluate a site’s URL and/or browser’s SSL
indicator rather than the contents of a web page to judge the
credibility of the sites. Conversely, novices, who often failed to
decide rightly, received strong signals from web contents only
while. Due to the nature of phishing, the web contents are
quite similar to what is displayed by a legitimate site, leading
novices to fall victims to the phishing trap.

It can be naturally assumed that checking the browser’s
address bar is beneficial for end users to be aware of phishing.
The reader should note that modern web browsers do show
the website’s URL and security information in the address bar.
Even the knowledge of URL and security are also important
for phishing prevention and are the strong motivation for
seeing there, the both of them could not work before the
users did not see the bar. This paper assesses this assumption
with a participant-based experiment in which 23 participants
are shown with 20 websites, and asked to determine which
ones are phishing while having their eye movement monitored.
Based on our experiment, it might be reasonable to consider
that novices do not have the habit of visually checking the
address bar.

According to these results, this paper then explores new
mechanisms for the users to acquire the habits of checking the
address bar while assessing the credibility of a website. Our
idea is to enforce them to look there first, before entering any
information to web input forms. Our proposed system, named
EyeBit, is implemented as a browser’s extension, and interacts
with an eye-tracking device. EyeBit deactivates all input forms
at the beginning of browsing, and activates the forms when
it confirmed that the user gazed the address bar. For our
preliminary evaluation of EyeBit, we called ten participants
to test if they got a habit in checking the address bar.

To this end, this paper makes the following contributions:

• We present an approach to counter phishing tactics,
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that we argue significant benefit for getting into the
habit of secure web browsing.

• We propose EyeBit which forms the habit of checking
the address bar for safe browsing in section III-A. To
the best of our knowledge, this is the first attempt
at making end users to acquire habits for phishing
prevention.

• We assess our assumption (“checking the browser’s
address bar is beneficial to end users in making
them aware of phishing”) through a participant-based
experiment in section III-B.

• We design EyeBit in consideration of cognitive as-
pects, and then implement a prototype of EyeBit as an
extension for Chrome web browser in section III-C.

• We evaluate the effectiveness of seeing the address bar
with an eye-tracking camera in a within-subject exper-
iment. The implementation is demonstrated to show
the effectiveness of getting the habit in section III-D.

• We observe that the inconvenience caused by EyeBit
is negligible in section IV-A.

II. RELATED WORK

A. Behavior of end users

The targets of phishing attacks are end users, so there were
various contributions to analyze end users and their activities.
According to an analysis report of 2,684 people by Fogg et
al. [4], 46.1% checked the design look and feel of a website
and 28.5 % used website structure of information, when people
assessed a real web site’s credibility. Ye et al. [5] also stated
that end users would convinced by the content of HTML and
URL, regardless of checking SSL padlock icons.

According to Kumaraguru et al. [6], there were the differ-
ence in the model for making trust decision between novices
and experts. In comparison to experts, novices were sensitive
to superficial signals when they made trust decision. Novices
also ignored some signals such as SSL, address bar, and so
on, where experts received these signals. Dhamija et al. [2]
reported their participant within tests for identifying phishing
sites. They found that phishing caused of lack of knowl-
edge. For example, participants thought www.ebay-members-
security.com belongs to www.ebay.com due to the lack of
system knowledge. Also, many participants did not understand
security indicators. They did not know that a closed padlock
icon in the browser indicates that the page they are viewing
was delivered securely by SSL. Even if they understand the
meaning of that icon, users can be fooled by its placement
within the body of a web page. They also found that the best
phishing websites fooled 90% of participants. The URL of the
site is “www.bankofthevvest.com”, with two “v”s instead of a
“w” in the domain name.

Wu et al. also measured the effectiveness of security tool-
bars, which informs end users that they are visiting phishing
sites [7]. They tested three types of security toolbars, namely,
Neutral-information toolbar such as NetCraft Toolbar [8], SSL-
Verification toolbar such as TrustBar [9], System-Decision
toolbar such as SpoofGuard [10]. Each of the three security
toolbars was tested with ten participants, and they browsed

both phishing sites and legitimate sites with one security
toolbar, and they also classified the site was phishing or not.
Wu et al. concluded that all toolbars failed to prevent users
from being spoofed by high-quality phishing attacks. Users
failed to continuously check the browser’s security indicators,
since maintaining security was not the user’s primary goal.
Although users sometimes noticed suspicious signs coming
from the indicators, they either did not know how to interpret
the signs or they explained them away.

B. Failure analysis

The root cause of social engineering is human errors; the
targets failed to behave or understand against attacks. Failure
analysis is the process of investigating the reason of failure. Its
process also collects and analyzes data, and develops methods
and/or algorithms to eliminate the root causes of the failure.
Zahran et al. [11] summarized the categorization techniques
for such analysis and introduced the component-based cate-
gorization; the failure can be caused of the components of
information systems, namely, hardware, software, communica-
tions networks, people, data resources and organization. The
analysis of human error is also important part in cyber security.
Especially, the interface studies investigated the reasons of
users’ misjudgments [12]. Based on their subjects experiments,
they clarified the mental model of users and indicated the way
for improving the user interfaces.

In the context of the people in enterprise, human factors
were analyzed to mitigate risks in the organization. According
to Hawkey et al. [13], [14], challenges of IT security man-
agements were classified into technical, organizational, and
human factors. To understand human behavioral model, Parkin
et al. [15] showed five behavioral foundation, namely cultural,
ethical, temporal, mindset, and capability difference. Based
on the foundation, they developed ontology which aims at
maintaining compliance with ISO27002 standard [16] while
considering the security behaviors of individuals within the
organization.

Alfawaz et al. [17] classified the characteristics of or-
ganizational subjects involved in these information security
practices. They analyzed the participants’ activities and cat-
egorized individual security behaviors into four modes, (i)
Knowing-Doing mode, (ii) Knowing-Not doing mode, (iii)
Not knowing-Doing mode and (iv) Not knowing-Not doing
mode. Term ”Knowing” means that the participants know
the organization’s requirements for information security of
behavior and have security knowledge. ”Doing” also means
that they are doing the right behavior. The cases of (i) and (iv)
said that the participants (do not) know the requirements and
(do not) have the knowledge, therefore, they are (not) doing
the right behavior. The example of the mode (ii) is that the
participant is unaware of the requirements, but asks someone
before taking certain actions. The mode (iii) is serious, that the
participants do not perform the right behavior even they know
the requirements. The root causes of the mode (iii) is regarded
as stressful events. Basically, people have a limited capacity
for information processing and routinely multitasks [18]. They
tends to conserve mental resources; full attention is for few
tasks and decisions.

The earlier researches can be summarized that understand-
ing both the personal knowledge and his/her internal mental
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processes are necessary for thwarting the impact of human
error. There are many approaches to reduce the human errors,
and this paper focuses on habits of security. Trustworthy com-
puting habits can maximize opportunities that the knowledge
works efficiently. It must be noted that the habitual action is
often performed under unconscious. Regardless of the stress,
habits have possibilities to improve the chance to exert the
knowledge for end users.

C. Cognitive analysis

Cognitive psychology is the study of relationship between
internal mental processes and observable behavior. To address
the problem in the observation, this paper refers to the evalua-
tion of cognitive methods for supporting operators studied by
Groojten [19] in which the following criteria were formulated.

• Sensitiveness to workload changes.
We need to employ the behavioral observation meth-
ods that can estimate the internal mental model. The
methods might also leverage the collected informa-
tion regardless of the Fear of Negative Evaluation
(FNE) [20]; observations are often affected by FNE,
in which some of people will conceal their human
errors. In fact, disclosing mistakes often damage their
own self-image and professional standing.

• Obtrusiveness for the operator.
The observation should not take much effort to start
collecting data or disturb the handling of people during
the tasks performance. Furthermore, people will not
carry implants or needles or other devices which may
hurt them in any way.

• Availability of equipment.
The observation should employ the method which
is easily applicable to people. Within the context of
phishing prevention, the methods should be available
while users are browsing. Non-contact devices might
be preferred.

Based on the requirements, this paper explores the suit-
able methods. Brain activity [21], heart measure, and blood
pressure [22] are feasible due to the sensitivity to work-
load changes, but they tend to require much obtrusiveness
for people. Contrastively, Facial expression [23] and Gesture
recognition [24] were often affected by FNE.

We speculate that the following research domains that
might be helpful for the observation.

• Eye Movements.
Research on experimental psychology has evidenced
a strong link between eye movements and mental
disorders [25], [26]. Leigh et al. [27] classified the
eye movements into four categories, namely Saccades,
Fixations, Smooth pursuit movements, and Vestibulo-
ocular reflexes. In the context of mental model, Irwin
et al. showed that the mental rotation is suppressed
during the movements [28], and Tokuda [29] showed
that mental workload, the indicator of how men-
tally/cognitively busy a person is, can be estimated
from saccadic intrusions. In addition to that, recent
eye-tracking devices also support non-mounting mon-
itoring as well as head-mount monitoring.

• Facial Skin Temperature.
Variation of facial skin temperature has received some
attention as a physiological measure of mental sta-
tus [30]–[32]. According to Genno et al. [33], their
experiments showed that temperature change in nose
area when subjects experienced sensations like stress
and fatigue. Furthermore, the thermography, when
combined with other modes of measurement provides
a highly automated and flexible means to objectively
evaluate workload [30].

In this paper, we decided to employ eye movements-based
observations by following reasons. At first, our motivation is
to let end users to get the habits of investigating the browser’s
address bar; an eye-tracking is a straight forward way for
observing users’ behavior. The second is that monitoring eye
movement will not significantly penalize users’ convenience
according to the above consideration. We also expect the eye-
tracking for recognizing mental anomalies to reduce impact of
human failure.

III. EYEBIT: EYE-TRACKING FOR PHISHING PREVENTION

This section introduces EyeBit, a system for end users to
get into the habit of checking the surrounding area of the
browser’s address bar while assessing a website’s credibility.
Section III-A summarizes the overview, and Section III-B
assesses our assumption, that is, checking the browser’s ad-
dress bar is beneficial for end users. Section III-C presents the
design and implementation of EyeBit , which is evaluated in
Section III-D.

A. Overview

In this paper, we speculate that the habit of checking the
address bar plays an important role in safe browsing. The key
idea is to require end users to look at the browser’s address
bar before entering anything into the web input forms.

According to Dhamija [2] who studied the reason why
novices fall victims to phishing, phishing is often successful
when there is a lack of knowledge about domain names (in or-
der to differentiate between URLs), about security information,
or lack of attention to this information. However, modern social
engineering attacks attempt at affecting victims’ composure.
For example, a phishing email states “your account was locked
because you violated the terms of service” which will prompt
the victim to immediately click an URL placed below and
presented as a way of recovery. From a psychological aspect,
the victims’ primary concern is about their locked account, and
not security, leading the authors to invalidate security education
as not sufficient, in that case, to prevent phishing.

To improve the acquisition of security education and
knowledge, the habit of looking at the bar might be reasonable.
The advantage is that this habitual action is often performed
unconsciously. Even if the primary concern of the end user is
not security, the habit would work like a conditioned reflex
action. The habit also improves the chance of being aware of
security information. Since modern web browsers show the
website’s URL and related security information in the address
bar, the surrounding area of the browser’s address bar shows
good signals for phishing detection.
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TABLE I: Conditions of each site used for recording eye movement

# Website Phish Lang Description
1 Google no JP SSL
2 Amazon yes JP tigratami.com.br, once reported as a compromised host
3 Sumishin Net Bank no JP EV-SSL
4 Yahoo yes JP kazuki-j.com, once reported as a compromised host
5 Square Enix yes JP secure.square-enlix.com, similar to legitimate URL

secure.square-enix.com
6 Ameba no JP non-SSL
7 Tokyo Mitsubishi UFJ Bank yes JP bk.mufg.jp.iki.cn.com, similar to legitimate URL bk.mufg.jp
8 All Nippon Airways yes JP IP address
9 Gree no JP non-SSL

10 eBay no EN EV-SSL
11 Japan Post Holdings yes JP direct.yucho.org, SSL
12 Apple yes EN apple.com.uk.sign.in...
13 DMM no JP SSL
14 Twitter yes JP twittelr.com
15 Facebook yes JP IP address
16 Rakuten Bank yes JP vrsimulations.com, once reported as a compromised host
17 Sumitomo Mitsui Card yes JP www.smcb-card.com, SSL
18 Jetstar Airways no JP SSL, non pad-lock icon by accessing non-SSL content
19 PayPal yes EN paypal.com.0.security-c...
20 Tokyo-Tomin Bank no JP 3rd party URL www2.answer.or.jp, EV-SSL

We therefore develop EyeBit, a system for enforcing phish-
ing prevention habits. Based on eye-tracking technologies,
EyeBit monitors if users see a particular portion of the screen.
Failing to look at the address bar will deactivate parts of web
contents in which users can input their personal information.

B. Assumption

In this section, we want to examine the assumption that
checking the browser’s address bar is beneficial to end users in
making them aware of phishing. In order to assess if gazing the
address bar improves the accuracy, we performed a participant-
based experiment to monitor an end-user’s eye activity. It must
be noted that our experiments must not collect and/or analyze
personally identifiable information. The experimental design,
concept and methodologies for recruiting participants are also
explained below.

1) Recruitment of participants through a poster advertise-
ment at a college campus.

2) Explanation of our experiment to the participant.

• Our purpose is to observe the user’s activity, in
particular with respects to assessing the credibility
of websites.

• Our goal is to develop security mechanisms for
protecting users from phishing.

• Before the experiments, each participant will be
asked his/her age and sex.

• During the experiments, each participant will be
monitored by an eye-tracking device, and be
shown 20 websites. Their activity will be moni-
tored, and they will be asked if each website seems
to be phishing or not. They will also be asked the
reason of their decision.

• Collected data consists of the participants’ age,
sex, decision result, decision criteria, and eye-
tracking data.

• Collected data is shared with both European and
Japanese research members.

3) Display of 20 website screenshots, including legitimate
websites and pseudo phishing sites.

In the experiment, the phishing sites are not real phishing
sites to avoid information leakage. Instead, our partici-
pants are presented with 20 screenshots of a browser that
rendered the websites. These screenshots were taken on
Windows 7 equipped with IE 10.0.

As shown in Table I, we prepared twelve phishing sites
and eight legitimate ones for the test. In comparison, a typical
phishing IQ test [2] presented participants with 13 phishing
sites and seven legitimate ones, so the ratio of phishing sites
over legitimate ones is quite similar to ours.

In this experiment, we recruited 23 participants to ob-
serve their eye movement. The volunteers were mainly males
in their twenties. With their consent, their eye movements
were recorded by our prepared eye-tracking device, Tobii
TX300 [34]. It needed calibration procedure for each partici-
pant.

We observed that the participants who rely on the URL
of the website would fail to flag websites 5, 14 and 17, since
these sites had almost the same URL as the legitimate sites,
except for one letter. The URLs of the websites 7, 12, and 19
contained a legitimate-sounding domain name. Website 20 was
legitimate but the domain name of this site had no indication
of its brand names. For participants who tended to rely on
security information of browsers, websites 11 and 20 might
be difficult to assess because although they were phishing
sites, they presented participants with a valid SSL certificate.
Conversely, websites 6 and 9 were legitimate but did not
employ valid SSL certificates though they required users to
login. Of course, since our prepared phishing websites were
lookalikes of the legitimate ones, it might have been more
difficult for the participants who relied on web contents.

Fig. 1 and 2 show typical eye-movement records on both
phishing and legitimate website, for a novice and an expert
respectively. Circles denote fixations, and the numbers in the
circles denote the order of the fixation. In the phishing case,
the novice looked at the web content but ignored the browser’s
address bar while assessing credibility, as shown in Fig. 1a.
Since the text and visual in phishing sites are quite similar to
the ones in legitimate sites, he failed to label the phishing site
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(a) Novice (b) Expert

Fig. 1: Eye-tracking in phishing website

(a) Novice (b) Expert

Fig. 2: Eye-tracking in legitimate website
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Fig. 3: The average false positive, false negative and error rate
for users that looked (blue) and did not look (orange) at the
address bar

correctly. In the legitimate case, he also only paid attention to
the web content as shown in Fig. 2a. In contrast, an expert
tends to evaluate the site’s URL and/or the browser’s SSL
indicator rather than the contents of the web page to judge the
credibility of the sites, as shown in Fig. 1b and 2b.

We then analyzed the detection accuracy of participants
who looked at the address bar and those who did not look,
respectively. The results were shown in Fig. 3, where he blue
bar denotes the average rates for the participants looked at the
address bar of the browser, and the orange bar denotes that for
the participants did not look at the bar.

Out of the 331 times the bar was gazed, 89 (26.9%)
misjudgments were observed. In the phishing websites case,
the participants looked at the bar 200 times in total, which
occurred 61 (30.5%) false negatives, i.e., labeling phishing
as legitimate. In the legitimate websites case, they looked at
the bar 131 times in total, which occurred 28 (21.4%) false
positives, i.e., labeling legitimate as phishing. In contrast, the
average error rate was 41.1% (53 out of 129), the false negative
rate was 56.6% (43 out of 76), and the false positive rate
was 18.9% (10 out of 53), when participants would ignore
the address bar. The average error rate and false negative rate
indeed decreased when the address bar was checked, although
experimental errors might have occurred due to some possible
offsets caused by the eye-tracking calibration procedure. The
increase of the false positive rate seems to be marginal. We
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therefore considered that our assumption, i.e., checking the
browser’s address bar is beneficial to end users in making
them aware of phishing, is reasonable.

C. Design and implementation

Based on the assumption described in Section III-B, we
implemented EyeBit, a system which enables novices to get
into the habit of checking the address bar. The requirements
of EyeBit are as follows.

• Web inputs control.
It must have functions to activate/deactivate web input
forms. EyeBit deactivates all input forms, at first.
When it detects that the user has checked the browser’s
address bar, all input forms are then activated.

• Eye-tracking capabilities.
It must interact with eye-tracking devices, and identify
that the user has looked at a particular portion in the
web browser with certainty. It also should provide
interfaces to obtain an end user’s eye position from
third-party developed application.

• Address bar localization.
It should be able to locate the address bar within the
screen.

The architecture of EyeBit is shown in Fig. 4. It consists of
(i) an eye-tracking module, (ii) a browser extension module,
and (iii) a control module. In order to meet the requirements,
we implemented EyeBit as a browser extension. The module
deactivates all input forms at first, and then activates them after
the eye-tracking module has confirmed that the user looked
at the address bar. The task of the eye-tracking module is
to interact with an eye-tracking device. We selected an eye-
tracking camera which could provide an interface to obtain an
end user’s eye position from our implementation.

Our prototype was implemented as an extension of Google
Chrome, therefore written in JavaScript, and consisted of
roughly 100 lines of code. We also selected Eye-Tribe-
Tracker [35] as the eye-tracking device. Its software devel-
opment kit (SDK) embeds the function of web server and
provides the user’s eye position in JavaScript Object Notation
(JSON) format messages.

Due to the performance difference, this device could not
correctly deal with eye-fixation, however, our implementation
checked if the user looked at the area of the address bar and
50 pixels of margins on each side. It stores the 30 seconds of

TABLE III: Decision results of participants

# A1 A2 A3 A4 A5 B1 B2 B3 B4 B5

1 F F F F
2
3 F F F F F
4 F F F
5 F
6
7 F
8
9 F F

10 F F
11 F F F F
12

eye-tracking records, and inspected his/her gaze position in one
second intervals, and reactivated the forms when the position
of the gaze was in the area for at least one time interval.

The limitation of our prototype was the localization of the
address bar. Instead, it measured the absolute position within
the screen. Assuming the browser’s window is maximized, the
position of the bar can be easily estimated. We will discuss
about methods for locating the bar in Section IV-D.

D. Evaluation

This section evaluates the effectiveness of EyeBit. As
our pilot study, in May 2014, we invited ten participants
and performed a within-subject experiment. The participants
browsed six emulated phishing sites and the same number of
legitimate sites, as listed in Table II. They checked whether
the site appeared to be a phishing site or not. Among the ten
participants, nine belonged to Nara Institute of Science and
Technology, and the rest belonged to the University of Tokyo.
All of them were male, two of them completed their M.Eng
degree in the last five years, while the remaining were master’s
degree students. We explained to them our purpose, goal, and
usage of the collected data as stated in Section III-B.

The experiment is composed of the following steps.

1) First stage: labeling websites 1–4
All participants were shown four websites 1 – 4 in Table II
and checked whether the sites were phishing or not.
When the participant deemed the site legitimate, he/she
would input the word “john” as a pseudo persona for the
website’s username input field.

2) Educational break
Before employing EyeBit, we would explain about what
the address bar indicates. The participants would be
shown with our educational material. With reference to
typical material [36], we convinced them to carefully
check the website’s URL, the presence of an SSL padlock
icon, and the EV-SSL information.

3) Second stage: labeling websites 5–8
After the educational break, five of the ten participants
would equip with EyeBit and be explained about EyeBit;
input forms would be deactivated until the browser’s
address bar was gazed upon. The rest of the participants
were not equipped with EyeBit. This differentiation was
made to comparatively study the effectiveness of EyeBit.
All participants were shown four websites 5 – 8 in Table II
and checked whether the sites were phishing or not.
Similarly to the first stage, the participants inputted the
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TABLE II: Conditions of each site used for evaluating EyeBit

# Website Phish Lang Description
1 Yahoo yes JP dmiurdrgs.cher-ish.net, once reported as a phishing site
2 PayPal no EN EV-SSL
3 eBay yes EN signin-ebay.com, similar to legitimate URL signin.ebay.com
4 DMM no JP SSL
5 Amazon yes EN www.importen.se, once reported as a phishing site
6 Bank of America no EN EV-SSL
7 Facebook no JP SSL
8 Square Enix yes JP hiroba.dqx.jp..., similar to legitimate URL hiroba.dqx.jp
9 Twitter yes JP twittelr.com

10 Google no JP SSL
11 Battle.net no EN EV-SSL
12 Sumitomo Mitsui Card yes JP www.smcb.card.com...., similar to legitimate URL www.smbc-card.com

word “john” to the website’s input form when deeming a
site legitimate. The five participants equipped with EyeBit
would need to activate the forms by checking the address
bar before labeling a website as legitimate.

4) Interval for sanitizing
Basically, people tend to be sensitive to phishing after
the education. We wait one hour for interval between the
second and last stage.

5) Last stage: labeling websites 9–12
Finally, we let all participants show the last four websites
9 – 12 in Table II. We intended to analyze the behavioral
differences between five participants who used EyeBit
and the rest participants who did not use EyeBit. We
also planned to observe remaining effect of education,
therefore, all participants did not equip EyeBit.

The detection results were shown in Table III, where
A1 · · · A5 denote the participant who used EyeBit, B1 · · · B5

denote the participant who did not use EyeBit, the letter “F”
denotes that a participant failed to judge the website, and the
empty block denotes that a participant succeeded in judging
correctly.

We assumed that participants A1 and A5 were novices.
Since they had no criteria for making decisions, they often
received strong signals from web content and hence, they
answered all of websites in the first stage as legitimate. After
the education, they were seemed to have criteria, so they could
perfectly answered to the websites 5 – 8. During one hour, the
effect would not be significantly attenuated. In the case of
websites 9 – 12, they saw the browser’ address bar at least ten
seconds, even if they did not equip EyeBit.

The participants B1 · · · B5 did not employ EyeBit, and we
speculated that the participant B2 and B3 were also novices;
they could not correctly identify phishing websites in the first
stage. However, their eye movement were formed to see the
address bar after the education.

There were some reasons that EyeBit worsened in the
participants A1 · · · A5 compared to when it was not used
B1 · · · B5. We assumed that the most predominant reason was
the small sample size. In the cases of the participant A2 and
A3, EyeBit had a potential for making them paranoid, since
websites 9 and 10 were legitimate but were labeled as phishing.
The another reason was that the educational effect did not
dissolve in one hour, and hence, the participants B1 · · · B5

performed better.

We then conducted a follow-up study in June 2014. The

study was focused on four novices, namely the participants
A1, A5, B2, and B3, and we observed the difference of the
educational effect remains in four participant after one month.
The participants were shown websites 1 to 20 in the table II.
We observed that the participants A1, A5, and B2 often looked
the browser’s address bar, although the participant B3 did not.
In regard to a difference from the pilot study in May 2014, the
participants A5 and B2 could judge correctly the websites 1
– 4. Through the follow-up study, no false negative error was
observed in the case of the participant A1 since he often looked
at the bar. In the case of the participant B3, the false negatives
increased in comparison of the pilot study. In particular, he
answered that the websites 1 – 4 seemed to be legitimate, as
same as the first stage of the pilot study.

Due to the small number of the participants, it is difficult
to accurately determine that EyeBit could exert the educational
materials in long time period. However, based on the observa-
tions of the pilot and follow-up study, we assumed that EyeBit
is helpful for getting the habit of seeing address bar while
making trust decisions.

IV. DISCUSSION

A. Potential inconvenience caused by EyeBit

The primary motivation for our experiment was to assess
the effectiveness of EyeBit in influencing users’ behavior to
check the address bar. Essentially, it must be investigated the
address bar to correctly judge, therefore, time increase for
seeing the address bar must be acceptable.

However, the significant time increase might penalize
users’ convenience. In general, there is a tradeoff between
usability and security, and hence EyeBit would penalize the
user’s experience to the benefit of security. There are various
methodologies for estimating the convenience, and here we
tentatively employed the overhead of time spent on the site as
a measure.

Fig. 5 shows the average time for making decision, where
x axis denotes the number of seconds, y axis denotes each
participant, Average(A) is the average time of A1 · · · A5 and
Average(B) is the average time of B1 · · · B5. The blue bar
denotes the average time for the first stage (websites 1 – 3),
the orange bar denotes the second stage (websites 5 – 7), and
the gray bar denotes the last stage (websites 9 – 11). Note that
we could not obtain the time on the last websites in each stage
due to the limitation of our experiment system, the time spent
in the website 4, 8, and 12 were not measured.
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Fig. 5: The average time required for making decision for
websites 1-3 (blue), websites 5-7 (orange), and websites 9-11
(gray), in respectively

In comparison to the results, we could not observe signif-
icant increase of time raised from EyeBit. We confirmed that
it took 22.5 seconds at the second stage for the participants
with EyeBit, whereas 11.9 seconds for the participants without
EyeBit. However, once the user gets in habits of seeing the
address bar, the average time was deceased to 18.5 seconds,
whereas it took 14.7 seconds. In regard to the differences
among individuals from the first stage, we assumed that the
inconvenience caused of EyeBit would be negligible.

B. Educational approach

Education is one of the straightforward ways to counter
phishing since phishing problems are caused of human errors.
There were much number of educational materials. For exam-
ple, Merve et al. [37] proposed educational materials and a
strategy on preparing to avoid phishing attacks.

Despite claims by security and usability experts that user
education about security does not work [38], there are some
evidence that well designed user security education can be
effective. Kumaraguru et al. proposed to employ a comic
as an educational material [39]. They tested the educational
effectiveness of 30 subjects with three types of educational
materials. Their results suggested that typical security notices
were ineffective. Their results also indicated that that their
comic strip format was more effective than the text and
graphics. Sheng et al. [40] found that the game is a novel
educational material. The main character of the game was
Phil, a young fish living in the Interweb Bay. Phil wanted
to eat worms so he can grow up to be a big fish, but has
to be careful of phishers that try to trick him with fake
worms (representing phishing attacks). They conducted the
total correctness of subjects’ classification before and after
the education. By using this game, the correctness increased
from 69%, before the education, to 87%. In the case of using
existing training materials, the correctness increased from 66%
to 74%.

In contrast with past studies [37], [39], [40], our approach
focused on getting habits, rather than development of educa-
tional materials. Since educational materials are often ignored
by users, our EyeBit was designed for getting end users to pay
attention to the address bar.

An alternative approach employed learning science princi-
ples in which phishing education is made part of a primary task
for users [41]. This intended to extend their past research [39],
and analyzed the individual user characteristics for improving
their educational materials. Our EyeBit gave further evidence
to their observations [41] on personalization of phishing pre-
vention.

C. Evaluation of effectiveness

All at first, getting habitual actions usually takes time.
EyeBit selected a methodology which enforces end users to
see the address bar before using input forms, and there are
many alternative methodologies for getting habits. Compara-
tive study among methodologies should be considered in future
works.

In order to confirm these effectiveness gained by EyeBit,
we will evaluate the effectiveness for long-term retention.
Nevertheless there are few research focused on observing the
effectiveness in long time periods, Kumaraguru et al. [42]
conducted the evaluation of various educational materials. In
the case of EyeBit, we should evaluate the effectiveness to
end users in different mental modes; the results might be
different if the users feel stressed. It may be difficult due to
the potential violation of the ethics whenever we intentionally
make stressful events to participants.

Furthermore, we will conduct our evaluation of modularity
for EyeBit in regard to cognitive aspects. Aside from anti-
phishing, understanding users’ mental state with eye-tracking
may be feasible solution to personalize cyber defense systems.
Since recent social engineering employs psychological manip-
ulation techniques, the anomalies in mental state might be
recognized by observable behavior. To assess this hypothesis,
we will analyze end users’ behavior, find its characteristics, and
develop personalized defense mechanisms in consideration of
the attributes of each end user. As shown in section II-C, eye
movement will give much insights while estimating the users’
behavior and its foundation.

For evaluating the effectiveness, elimination of bias might
be discussed. In our experiments, there were some bias due
to the number of samples and/or biased samples. In order to
thwart the bias, we will present our prototype of EyeBit at
shared code repository [43]. It is possible by distributing the
work as browser-extension with some feedback and getting a
large population of users to agree to use it.

D. Limitation of implementation

In this study, we used two eye-tracking devices that
are designed for non-mounting monitoring. They are usually
affected by sudden movements of head, neck and/or face.
In order to suppress it, the head-mount eye-tracking device
might be available. Our experiments were intended to thwart
participants’ inconvenience caused by equipment of the head-
mounted device. However, it might be worthwhile to evaluate
EyeBit in the case of using this type of devices.
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As we mentioned in section III-C, the limitation of our
prototype was recognition of the address bar. EyeBit should
identify a browser window on the screen at first, and then
recognize the position of its address bar. One possible way is
pattern matching in a digitized image. Alternative is estimating
from the position of the browser’s top-left corner. In both cases,
adjusting for each participant will be necessary.

A potential implementation issue is lack of support for
smartphone devices. Recently, people use smartphone devices
as well as personal computer. However, smartphone users are
also faced with cyber crimes, since the user interfaces for
smartphones are constrained by their small screens, browsers in
the smartphones often lack a function for showing trustworthy
indicators. Due to the small size of the smartphone browser’s
address bar, it is necessary not only checking the users’
gaze to the address bar, but also monitoring their additional
activities. This might entail the best practice for browsing with
smartphones, but it is beyond the scope of this paper.

V. CONCLUSION

Basically, habits of checking the address bar will exert
security education and knowledge, improve a chance to be
aware of security information from browsers, and work like a
conditioned reflex action regardless of the users’ primal con-
cern. This paper therefore focused on enforcing end users to
get the habit of checking the address bar. Our key contribution
is development of EyeBit, which aims end users acquiring the
habit of seeing browser’s address bar before entering any data
into websites. EyeBit was able to control web input forms, and
deactivate all of them until the end users saw the address bar.
By interacting with eye-tracking devices, it finally activated
the forms when the users saw there.

We confirmed that the effectiveness of seeing the bar,
at first. Our participant-based test showed that the decision
accuracy increased by checking the address bar. Based on
the observation, we designed and implemented EyeBit as a
browser extension with eye-tracking camera. In the pilot study,
we performed new participant-based test. The effectiveness of
the education with EyeBit succeeded to form the behavior of
novices. We found the inconvenience caused of EyeBit was
negligible. One month later, we performed a follow-up study
to observe behavior of novices. The pilot study could not
show significant difference in the case of the education without
EyeBit, however the follow-up study indicated that EyeBit
could decrease false negative errors in which a participant
deems a phishing website as legitimate. The eye movements
of novices who employed EyeBit in the pilot study often
checked the address bar. We therefore considered that EyeBit
was helpful for getting the habit of seeing address bar while
making trust decisions.
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Abstract—Security bugs are critical programming errors that
can lead to serious vulnerabilities in software. Examining their
behaviour and characteristics within a software ecosystem can
provide the research community with data regarding their
evolution, persistence and others. We present a dataset that
we produced by applying static analysis to the Maven Central
Repository (approximately 265GB of data) in order to detect
potential security bugs. For our analysis we used FindBugs, a tool
that examines Java bytecode to detect numerous types of bugs.
The dataset contains the metrics’ results that FindBugs reports
for every project version (a JAR) included in the ecosystem.
For every version in our data repository, we also store specific
metadata, such as the JAR’s size, its dependencies and others.
Our dataset can be used to produce interesting research results
involving security bugs, as we show in specific examples.

Keywords—Security Bugs, Software Security, Static Analysis,
FindBugs, Software Ecosystem, Maven Repository, Software Evo-
lution.

I. INTRODUCTION

A security bug is a programming error that introduces a
potentially exploitable weakness into a computer system [1].
Compared to other bug categories, failures due to security bugs
have two distinct features: they can severely affect an organiza-
tion’s infrastructure [2], and they can cause significant financial
damage to an organization [3], [4]. Specifically, whereas a
software bug can cause a software artifact to fail, a security bug
can allow a malicious user to alter the execution of the entire
application for his or her own gain. Such bugs could give rise
to a wide range of security and privacy issues, like the access
of sensitive information, the destruction or modification of
data, and denial of service. Moreover, security bug disclosures
lead to a negative and significant change in market value for
a software vendor [5]. One of the most common approaches
to identify security bugs is static analysis [6]. This kind of
analysis involves the inspection of the program’s source or
object code without executing it.

A software ecosystem can be seen as a collection of
software projects, which are developed and co-evolved in the
same environment [7]. Components can be interdependent and
have multiple versions. Examples of such ecosystems include

TABLE I. BUG CATEGORIZATION ACCORDING TO FINDBUGS.

Category Description
Bad Practice Violations of recommended and essen-

tial coding practice.
Correctness Involves coding misting a way that is

particularly different from the other bug
sakes resulting in code that was proba-
bly not what the developer intended.

Experimental Includes unsatisfied obligations. For in-
stance, forgetting to close a file.

Internationalization (i18n) Indicates the use of non-localized meth-
ods.

Multi-Threaded (MT) Correctness Thread synchronization issues.
Performance Involves inefficient memory usage allo-

cation, usage of non-static classes.
Style Code that is confusing, or written in a

way that leads to errors.
Malicious Code Involves variables or fields exposed to

classes that should not be using them.
Security Involves input validation issues, unau-

thorized database connections and oth-
ers.

Python’s PyPI1 (Python Package Index), Perl’s CPAN2 (Com-
prehensive Perl Archive Network), Ruby’s RubyGems3 and the
Maven Central Repository.4 Maven is a build automation tool
used primarily for Java projects hosted by the Apache Software
Foundation. It uses XML to describe the software project being
built, its dependencies on other external modules, the build
order, and required plug-ins. To build a software component,
it dynamically downloads Java libraries and Maven plug-ins
from the Maven Central Repository, and stores them in a local
cache. The repository can be updated with new projects and
also with new versions of existing projects that can depend on
other versions.5

To analyze the Maven repository we used FindBugs,6 a
static analysis tool that was also used for research purposes
in [8] and [9]. FindBugs’ role is to examine Java bytecode to
detect software bugs and separate them into nine categories.
Two of them involve security issues (see Table I). In this paper
we present: a) the construction process to obtain the collection

1https://pypi.python.org/pypi
2http://www.cpan.org/
3http://rubygems.org/
4http://mvnrepository.com/
5Note that in the Maven repository, versions are actual releases.
6http://findbugs.sourceforge.net/
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TABLE II. DESCRIPTIVE STATISTICS MEASUREMENTS FOR THE
MAVEN REPOSITORY.

Measurement Value
Projects 17,505
Versions (total) 115,214
Min (versions per project) 1
Max (versions per project) 338
Mean (versions per project) 6.58
Median (versions per project) 3
Range (over versions) 337
1st Quartile (over versions) 1
3rd Quartile (over versions) 8

Maven Repository

artf 
URL

Project Events 
Queue

Worker Worker Worker

Queue
 Loader

RabbitMQ

artf 
URL

Fig. 1. The data processing architecture.

of the metrics results that the FindBugs tool produces for
every project version of the repository (115,214 JARs), b) our
dataset and c) how researchers can use the dataset and produce
meaningful results concerning security bugs.

II. CONSTRUCTION PROCESS

Initially, we obtained a snapshot of the Maven repository
and handled it locally to retrieve a list of all the names
of the project versions that existed in it. Then, we filtered
out projects written in programming languages other than
Java because FindBugs analyzes only Java bytecode. The
statistic measurements concerning the repository can be seen
in Table II.

Due to the large volume of our dataset, we designed
our data processing step in a distributed way. A schematic
representation of our data processing architecture can be seen
in Figure 1. In particular, we created a series of processing
tasks based on the JAR list we have obtained and added them to
a task queue mechanism (a RabbitMQ7 message broker). Then,
we executed twenty five workers (custom Python scripts) that
checked out tasks from the queue, processed each project ver-
sion and stored the results to the data repository (a MongoDB8

database system).

A typical processing cycle of a worker included the follow-
ing steps: as soon as the worker was spawned, it requested a
task from the queue. This task contained the JAR name, which
was typically a project version that was downloaded locally.
First, specific JAR metadata were calculated and stored (see
Section III). Then, FindBugs was invoked by the worker and its

7http://www.rabbitmq.com/
8http://www.mongodb.org/

TABLE III. BUG DESCRIPTION.

type EI EXPOSE REP2
category MALICIOUS CODE
source File ANTLRHashString.java
class antlr.ANTLRHashString
method setBuffer
sourceline start 97
sourceline end 98

results were also stored in the data repository. Note that before
invoking FindBugs, the worker checked if the JAR is valid
in terms of implementation. For instance, for every JAR the
worker checked if there were any .class files before invoking
FindBugs.

When the data collection was completed, we ran some tests
to check the validity of the results. A common issue that we
discovered was the out-of-memory crashes of FindBugs, which
demanded the repetition of the process for the corresponding
JARs, with the appropriate settings in the Java Runtime Envi-
ronment (JRE).

III. DATASET ENTRIES

FindBugs reports bug collections that include all the bugs
discovered in a JAR file. For every registered bug, there are
numerous accompanying features like the class, the method
and the line that the bug was found (see Table III). FindBugs’
results also include additional information like the number of
classes included in the examined JAR and others.

As we mentioned earlier, our data were stored in a
MongoDB database that stores its records in JSON-like doc-
uments. However, FindBugs outputs its results in XML format.
Hence, all the data were converted to the JSON format by
mapping all XML elements to JSON objects.

As we discussed in Section II, our workers calculated
and stored specific metadata together with the FindBugs’
results. Such metadata included the JAR’s size (in terms of
bytecode), its dependencies, and the ordinal version number
of the version. This number was derived from an XML file
that accompanies every project in the Maven repository called
maven-metadata.xml. The following listing shows the format
of the metadata each worker collected. Note that the results of
FindBugs are too large to fit, thus in order to see a complete
instance please visit our GitHub repository (see Section VII):

{"JarMetadata": {
"version": "1.0.0",
"version_order": "1",
"jar_size": "34768",
"dependencies": [

{
"version" : "2.0",
"groupId" : "org.apache.maven",
"artifactId" : "maven-project"

},
{ /* other dependencies */ }

],
"group_id": "org.apache.myfaces.buildtools",
"jar_filename": "myfaces-jdev-plugin-1.0.0.jar",
"artifact_id": "myfaces-jdev-plugin",
},

"BugCollection": { /* FindBugs data */ }
}
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Fig. 3. Basic k-means clusters of all the versions that exist in the ecosystem.

IV. GATHERING EXPERIENCE RETURNS FOR SECURITY
BASED ON OUR DATASET

Since MongoDB provides a rich query interface, it was
easy to find out how software bugs are distributed among
the repository (see Figure 2) or identify the main clusters
that are formed based on the number of the bugs of every
version (see Figure 3). An interesting observation is that the
Malicious Code bugs, together with the Bad Practice bugs are
the most popular in the repository. Also, a simple query like the
following, will reveal that from the total number of versions,
45,559 of them contained at least one bug coming from the
Malicious Code category:

db.findbugs.find({
’BugCollection.BugInstance.category’ :
’MALICIOUS_CODE’}).count()

TABLE IV. CORRELATIONS BETWEEN VERSION AND SOFTWARE BUGS
COUNT.

Category Spearman Correlation p-value
Security 0.04 < 0.05
Malicious Code 0.03 � 0.05
Style 0.03 � 0.05
Correctness 0.04 � 0.05
Bad Practice 0.03 � 0.05
MT Correctness 0.09 � 0.05
i18n 0.06 � 0.05
Performance (0.01) 0.07
Experimental 0.09 � 0.05

Another observation involves specific bugs thath we could
consider as critical and they are a subset of the Security
category. Such bugs are related to vulnerabilities that appear
due to the lack of user-input validation and can lead to dam-
aging attacks like SQL injection and Cross-Site Scripting [10].
Also, as FindBugs’ bug descriptions indicate,9 if an application
has bugs coming from this category, it might have more
vulnerabilities that FindBugs doesn’t report. Table V presents
the number of versions where at least one of these bugs exists.
In essence, 5,341 project versions, contained at least one bug
related to user-input validation issues. Given the fact that other
projects include these versions as their dependencies, they
are automatically rendered vulnerable if they use the code
fragments that include the security bugs.

Furthermore, we have created a series of scripts to exhibit
how the dataset can be used to capture correlations regarding
the evolution of security bugs. First, based on the dataset we
produced some metadata that contained the number of bugs per
category in each project version. Based on these metadata we
estimated the relation between bugs and time (see Table IV).
Specifically, we calculated the Spearman correlations between
the defects count and the ordinal version number across all
projects. The zero tendency that can be seen on Table IV
applies to all versions of all projects together.

The situation was different in individual projects where we
performed Spearman correlations between security bug counts
and version ordinals in all projects we examined. These paint
a different picture from the above table, shown in Figure 4.
The spike in point zero is explained by the large number
of projects for which no correlation could be established—
note that the scale is logarithmic. Still, we can see that there
were projects where a correlation could be established, either
positive or negative. Such results indicate that we cannot say
if vulnerabilities decrease or increase as projects mature.

In addition, we explored the relation between security bugs
with the size of a project version, measured by the size of
its JAR file by carrying out correlation tests between the size
and the security bug counts for each project and version. The
results can be seen in Table VI. An interesting observation is
that the Security category stands out by having a remarkably
lower effect than the other categories. As we mentioned earlier,
many bugs that belong to this category are related to user-input
validation issues. Hence, it seems that even if a programmer
adds code to a new version, if this code does not require user
input, the possibility of such bug is minimal.

9http://findbugs.sourceforge.net/bugDescriptions.html
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TABLE V. NUMBER OF PROJECT VERSIONS THAT CONTAIN AT LEAST ONE SECURITY BUG RELATED TO USER-INPUT VALIDATION ISSUES.

Bug Description Number of Project Versions
HRS: HTTP cookie formed from untrusted input 151
HRS: HTTP response splitting vulnerability 1,579
SQL: non-constant string passed to execute method on an SQL statement 1,875
SQL: a prepared statement is generated from a non-constant String 1,486
XSS: JSP reflected cross site scripting vulnerability 18
XSS: Servlet reflected cross site scripting vulnerability in error page 90
XSS: Servlet reflected cross site scripting vulnerability 142

(a) (b)

Fig. 4. Correlations between version and software bugs count.

TABLE VI. CORRELATIONS BETWEEN JAR SIZE AND SOFTWARE BUGS
COUNT.

Category Spearman Correlation p-value
Security 0.19 � 0.05
Malicious Code 0.65 � 0.05
Style 0.68 � 0.05
Correctness 0.51 � 0.05
Bad Practice 0.67 � 0.05
MT Correctness 0.51 � 0.05
i18n 0.53 � 0.05
Performance 0.63 � 0.05
Experimental 0.36 � 0.05

Figure 5 presents the pairwise correlations between all bug
categories. To establish these correlations, we calculated the
correlations between the number of distinct bugs that appeared
in a project throughout its lifetime. Our results show that bugs
coming from the Security category are not correlated with the
bugs coming from other categories. This indicates that security
bugs of this kind do not appear together with the other bugs.10

V. THREATS TO VALIDITY

During our dataset analysis we faced some limitations that
concerned the non-availability of some JARs. Specifically, there
were some JARs included in the initial JAR list, that were
not available online, when the FindBugs result collection was
performed.

A threat to the internal validity of our dataset construction
process could be the false alarms of the FindBugs tool [8], [12],
[13]. Specifically, reported security bugs may not be applicable
to an application’s typical use context. For instance, FindBugs
could report an SQL injection vulnerability in an application

10Further research concerning the examination of security bugs based on
this dataset can be found in our previous paper [11].
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Fig. 5. Correlation matrix plot for bug categories. Blue color indicates positive
correlation. The darker the color (and the more acute the ellipsis slant), the
stronger the correlation.

that receives no external input. In this particular context, this
would be a false positive alarm. False alarms of static analysis
tools and how they can be reduced are issues that have already
been discussed in literature [9], [14] and they are beyond the
scope of this paper.

VI. RELATED WORK

Our work is related to the creation of datasets to facilitate
research and the examination of software vulnerabilities.

The Maven ecosystem has been previously analyzed by
Raemaekers et al. [15] to produce the Maven dependency
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dataset. Apart from basic information like individual methods,
classes, packages and lines of code for every JAR, this dataset
also includes a database with all the connections between the
aforementioned elements. Our work differs from this research
because it reports all bugs coming from the output of a static
analysis tool, for each JAR contained in the Maven repository.

Identyfying software bugs in multiple projects is not a new
idea [16]. On the security front, Ozment and Schechter [17]
examined the code base of the OpenBSD operating system
to determine whether its security is increasing over time.
Massacci et al. [18] observed the evolution of software defects
by examining six major versions of Firefox. In addition,
Shahzad et al. [1] analysed large sets of vulnerability data-
sets to observe various features of the vulnerabilities that they
considered critical, while Edwards et al. [19] have examined
the evolution of security bugs by examining different versions
of four projects.

VII. CONCLUSIONS

In this paper, we have presented a dataset that includes
all the software bugs that each JAR of the Maven central
repository contains along with some other metadata mentioned
in Section IV. We have also shown how our data can be used
to extract results concerning the evolution and the behaviour
of security bugs.

Initially, we made some observations concerning the se-
curity bugs of the Maven repository as a whole. Then, based
on our dataset, we found that we cannot say with confidence
if security bugs increase or decrease as projects mature. We
also showed that there were many projects where security
bug counts do not change as projects evolve. Concerning the
relation between severe security bugs and a project’s size
we showed that they are not proportionally related. Given
that, we could say that it is productive to search for and fix
security bugs even if a project grows bigger. In addition, the
pairwise correlations between all categories indicates that even
though all the other categories are related, severe bugs do not
appear together with the other bugs. Such findings indicate
that projects have their own idiosyncrasies regarding security
bugs and could help us answer questions like: what are the
common characteristics of the projects where security bugs
increase over time? Finally, the analysis of a vulnerability
management dataset like the NVD11 (National Vulnerability
Database), to identify disclosed vulnerabilities and check if
there is a correlation between them and our dataset, could
provide interesting results.

By selecting a large ecosystem that includes applications
written only in Java, we excluded by default measurements
that involve vulnerabilities like the infamous buffer overflow
vulnerabilities [20]. Still, by examining software artifacts with
similar characteristics facilitates the formation of an experi-
ment. Thus, future work on our approach could also involve
the observation of other ecosystems like the ones mentioned in
Section I and projects in different languages like Ruby, Python
etc. Concluding, the complete set of our data and source code
will become available upon publication.

11http://nvd.nist.gov/
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Abstract—Threat detection and analysis are indispensable
processes in today’s cyberspace, but current state of the art
threat detection is still limited to specific aspects of modern
malicious activities due to the lack of information to analyze.
By measuring and collecting various types of data, from traffic
information to human behavior, at different vantage points for a
long duration, the viewpoint seems to be helpful to deeply inspect
threats, but faces scalability issues as the amount of collected data
grows, since more computational resources are required for the
analysis. In this paper, we report our experience from operating
the Hadoop platform, called MATATABI, for threat detections,
and present the micro-benchmarks with four different backends
of data processing in typical use cases such as log data and packet
trace analysis. The benchmarks demonstrate the advantages of
distributed computation in terms of performance. Our extensive
use cases of analysis modules showcase the potential benefit of
deploying our threat analysis platform.

Keywords—Cybersecurity, Multi-layer threat analysis, Hadoop

I. INTRODUCTION

In parallel to the growth of the Internets functionality as
a distributed system, the number of critical threats is also
increasing, rendering pro-active defensive approaches trouble-
some. Various categories of malicious activities have been seen
in the wild, and multiple countermeasures have been proposed
and deployed. Unfortunately, no defense mechanism has been
able to completely hinder attacks and bring an end to this
perpetual arms race.

A significant obstacle against deploying a countermeasure
for such threats, is the lack of knowledge of what is hap-
pening in the system: a single point of observation at the
firewall has no knowledge about the other egress nodes of
an enterprise network, or scanning applications deployed at
various endpoints lack global information which would provide
information whether their probing is assisting a Distributed
Denial of Service (DDoS) attack. The limited number of
observation points and type of information collected needs
improvement.

The recently established NECOMA project1 aims at im-
proving the situation of current cyber-security, by introducing
new insight regarding countermeasure. It assumes the missing
pieces for creating robust countermeasure are the lack of 1)
information or types of datasets for threat analysis and 2)
locations that observers should look at. In the other words,
the more data is available about an attack, the more data can

1http://www.necoma-project.eu/

be analyzed and thus, the higher the probability that the most
effective countermeasures are taken.

However, such a huge collected dataset easily faces a
scalability problem in terms of not only the storage of the
collected data, but also computation resource of the analysis
itself because it also requires a fair amount of computational
resource to investigate the datasets across the multiple sensors
at different layers and various locations.

This paper reports our experience on the development of
a big-data platform, called MATATABI, in order to fulfill the
requirements for cyber-threat analysis (detailed in § II). We
combined possible techniques and ideas available to satisfy
the requirements, by incorporating and tweaking existing open
source software. Our development follows several basic studies
([1][2][3]) in the past, but aimed at creating more complete
system that allows us to detect complex security threats
involving multiple data sources and locations of attackers.

Our contributions of this paper include:

• We designed and implemented the data collection
and analysis platform, MATATABI, to handle multi-
terabytes measurement data for the security threat
analysis.

• We studied performance of our system with data
querying benchmarks and gave the best practice for
the implementations of threat analysis modules.

II. REQUIREMENTS

Considering the amount of collected data for the threat
analysis, the design of data collection and analysis platform
must satisfy the following properties;

R-1) the input and output performance of data must be scal-
able in terms of size of analyzed data (scalability).

R-2) the computation resource must be scaled out with the
number of nodes: hopefully real-time performance for
the detection of threats on the fly (real-time analysis).

R-3) the platform must be adaptable with the multiple kinds
of data types (e.g., formatted text, binary data, etc)
and layers (e.g., network traffic, user behaviors, etc)
without introducing new ways to analyze them (uniform
programmability).

R-1 and R-2 are obvious requirements, but R-3 is also
important since one cannot predict threats, but is required to
detect them once they happen.
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Fig. 1. Overview of MATATABI. Based on the Hadoop platform, we integrated the data storage with import modules, analysis scripts, and an application
programing interface in a single platform.

We will describe the system and how it fulfills the afore-
mentioned requirements in the following section.

III. DESIGN OF MATATABI PLATFORM

This section presents the design of our platform, so called
MATATABI that serves data collection and analysis for the
threat detection in order to fulfill the requirements described
in § II. Figure I depicts the overview of our implemented
platform, which consists of three key components; 1) data stor-
age in a distributed environment, 2) data import modules, 3)
analysis modules, and 4) Application Programming Interface
(API) with the help of Apache Hadoop [4] software2.

A. Data Storage and Base Software

The data storage component relies on the Hadoop Dis-
tributed File System (HDFS) to locate and access data in a
distributed environment so that applications are agnostic to
access the data where they are running on. We employed totally
nine cluster nodes in total (Table I) distributed across several
Japanese universities.

On top of served distributed file system, various data access
utilities such as Hive [5] (SQL liked interface), Presto-db [6]
(distributed query engine), and language bindings (Thrift [7],
Rhadoop [8]) are employed in order to create analysis modules
(§ III-C). These varieties of utilities are helpful not only
for its friendliness to Hadoop environment, but also we can
reuse existing analysis implementations used at stand-alone
environments without reimplementing a lot. Furthermore, SQL
like interface provided by Hive or Presto-db is useful to
analyze multiple layers of data sources with simple query
statements.

B. Data Import Module

The data import module basically works for copying vari-
ous kinds of collected data into HDFS so that the analysis mod-
ule implemented by the Map-Reduce framework can access
directly. It will benefit locality during data reading process, as
it is arranged by Hadoop automatically.

2At the moment, we used Apache Hadoop 2.2.0 version.

TABLE I. EQUIPMENTS OF HADOOP CLUSTER.

CPU RAM Storage

master 2.5GHz (8 cores) 24GB 1.9TB
hadoop1 2.2GHz (16 cores) 38GB 52GB
hadoop2 0.8GHz (8 cores) 68GB 77GB
hadoop4 0.8GHz (8 cores) 68GB 77GB
hadoop6 0.8GHz (8 cores) 32GB 253GB
hadoop7 2.2GHz (16 cores) 50GB 1.9TB
slave02 2.0GHz (24 cores) 64GB 6.6TB
slave03 2.0GHz (24 cores) 64GB 6.6TB
slave04 2.0GHz (24 cores) 64GB 6.6TB

Table II describes the list of data import modules which we
have used at the present moment. Some of them are converted
to Hive-oriented table, others are stored as-is (binary data).

For the data access via Hive, Hive Serializer/Deserializer
(SerDe) is used to read and write HDFS data with a custom
format. It allows us to reduce the cost of implementing a data
import module. We slightly modified RIPE pcap SerDe [9] for
the data stored in pcap format.

Figure 2 is an example of a Hive database schema, which
represents a custom format definition of pcap file containing
DNS packets. With PcapDeserializer of the RIPE mod-
ule, pcap files can be queried with an SQL-like language.

C. Analysis Module

The analysis module works on top of data store which
provides high computation resource with flexible data access
interface. Unlike ordinary applications for threat analysis run-
ning on a standalone machine, the module will benefit from the
distributed computations by Map-Reduce or distributed query
engine of Presto-db.

An example of the process of our implemented analysis
module, and the corresponding queries to the Hive/Presto-db
can be seen in figure 3: 1) to look for events in collected
datasets which contain suspicious indications of threat, 2) find
the behavior of the indications into another dataset to identify
correlations among multiple data sources (where 192.168.10.1
is the IP address that first query detects it as suspicious host),
and 3) extract some attributes from the indications and store
into a blacklist.
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TABLE II. DATA CONVERSION INTO HDFS.

format parser data size (per day) remark

DNS pcap as-is PcapDeserializer (hadoop-
pcap [9])

5GB date/node partitioned

Netflow csv CSV 1.2GB nfdump, lzo compress,
date/node partitioned

sFlow csv CSV 4.1GB sflowtool, lzo compress,
date/node partitioned

DNS querylog ssv (bind9) SSV 1.5G date/node partitioned
SPAM email SSV 4.5MB date/MUA partitioned

� �
CREATE EXTERNAL TABLE IF NOT EXISTS dns_pcaps (ts bigint,

protocol string,
src string,
src_port int,
dst string,
dst_port int,
len int,
ttl int,
dns_queryid int,
dns_flags string,
dns_opcode string,
dns_rcode string,
dns_question string,
dns_answer array<string>,
dns_authority array<string>,
dns_additional array<string>)

PARTITIONED BY (dt string, server string)
ROW FORMAT SERDE

’net.ripe.hadoop.pcap.serde.PcapDeserializer’
STORED AS INPUTFORMAT

’net.ripe.hadoop.pcap.io.PcapInputFormat’
OUTPUTFORMAT

’org.apache.hadoop.hive.ql.io.\
HiveIgnoreKeyTextOutputFormat’

LOCATION ’hdfs:///dns-pcaps/’;� �
Fig. 2. Example Hive table scheme for pcap data.� �

1) select * from dns_pcaps where regexp_like \
(dns_question, ’[a-z0-9]{32,48}’);

2) select * from netflow where srcip=’192.168.10.1’;
3) select time,client_fqdn from suspicious_flow ;� �

Fig. 3. Steps for an analysis module to seek suspicious flows through multiple
data sources.

D. MATATAPI: API for MATATABI

The analytical results obtained from our platform are
valuable not only for our own purpose, but also the others
who try to detect threats from their analysis. Multi-dimensional
analysis using different datasets at the different physical or
logical space will help early threat detection: if indication
of threats were detected in advance and propagated these
information to others, one can countermeasure against such
threats.

For that purpose, we designed MATATAPI, an application
programing interface (API) for MATATABI, in order to provide
an interface for accessing analytical results. Our design is
a simple wrapper for the existing Presto REST API, which
is available by Presto-db and generates JavaScript Object
Notation (JSON) objects for a certain request through the API.
All we need to provide an API is 1) to create a Hive (or Presto-
db) table, and 2) to write a bridge program from client requests
to Presto REST API.

� �
def Query (time_min, time_max):

headers = {
’context-type’: ’text/plain’,
’x-presto-user’: ’presto’,
’x-presto-catalog’: ’hive’,
’x-presto-schema’: ’default’
}
url=’http://master:8080/v1/statement’

data = "select dga_domain from zeus_dga_result
where dt >= ’%s’ AND dt <= ’%s’"
% (time_min, time_max)

request = urllib2.Request (url, data, headers)
return json.loads (urllib2.urlopen(request).read())� �

Fig. 4. A sample python program of MATATAPI bridge program.
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Fig. 5. Performance parsing on plain text data (DNS query log).

Figure 4 represents an example of the bridge program
written in python, where it bridges requests received via http
transport and runs as a CGI program on a web server.

IV. MICRO-BENCHMARKS

In order to assess the performance of the data processing
of use cases that are typical to threat analysis, we conducted
micro-benchmarks in this section. The objectives of this bench-
mark are:

• to observe the scalability for the amount of data (data
size), and

• to present a best practice for implementing the analysis
module.

A. Regular Expression Match on Plain Text Files

The first benchmark shows the response time for data query
when the amount of data scanned for the queries increases.
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� �
’[a-z0-9]{32,48}.(ru|com|biz|info|org|net)’� �

Fig. 6. Regular expression of a DGAed domain name.

Since the data collected for the analysis increases day by day
and is easy to fill up the storage, it is important to understand
how much data we can process in order not to degrade the
performance of analysis.

To measure the performance, we setup scripts that conduct
a simple query to pick events from the data sources. The scripts
we used are 1) grep command-based shell script without
Hadoop (shell-grep), 2) Hive query language, 3) Presto-db
SQL, and 4) python script of Hadoop streaming. All the scripts
parse and look for strings using a regular expression shown in
figure 6, which represents the Domain Generation Algorithm
(DGA) for ZeuS Bot [10]), and then print the results to the
console screen.

As a target data for this benchmark, we used a) formatted
text based log files which contain bind93 querylog, and b)
pcap files which contain DNS traffic.

We ran the scripts on our Hadoop cluster described in
Table I (except 1) shell-grep script, which uses a single
node, master, with local storage) and measured the execution
time of each script.

Figure 5 represents the result of response time of each
script as a function of data size (i.e., we changed the number of
date to be parsed) with the 95% confidence interval computed
for 3 replications of script execution.

The performance of single node data queries present a
slower response time, while distributed computation by Hive
and Presto-db gives faster response (40% faster in the best
case), when the size of data parsed increased. Note that
although our hadoop streaming script dispatched query jobs
into distributed node, we did not see much performance gain.
This may be due to an implementation matter of the streaming
script that we used, but it is possible to achieve such a
performance with a simple mapper/reducer implementation for
the hadoop streaming.

B. Regular Expression Match on pcap Files

Figure 7 represents another benchmark using different
datasets, pcap files contain DNS traffic, in the same environ-
ment. In this benchmark we have completed only one iteration
of the benchmark due to time constraints.

Unlike the performance on queries to plain text files shown
in figure 5, the shell-grep performance is worse: the
response time was 21 times slower in the worst case than
the one of Presto-db. This is possible considering heavy tasks
in each filtering process: extracting gzip compressed data of
original pcap files, decoding packet data from pcap for-
mat by tshark command, and regular expression matching
by grep command. On the other hand, other scripts using
hadoop infrastructure employs RIPE hadoop-pcap library
which effectively dispatches reading files and string matching

3https://www.isc.org/downloads/bind/
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Fig. 7. Performance parsing on binary data (pcap file).

operation into distributed nodes, resulted in a high performance
gain compared to the shell-grep implementation. Note that
the RIPE hadoop-pcap library also stores the raw pcap
data into HDFS, and then decompresses and decodes the file
when data query is issued so, the both response times of
shell-grep and others involve same procedure.

Presto-db achieves almost the best result among the four
different scripts, with a low implementation cost for the data
parsing script. If an analysis is based on simply looking up
events on a Hive table, Presto-db is the best possible choice
for a data store.

C. Processing Multiple Datasets

The last benchmark is a performance measurement on
querying multiple datasets at the same time to analyze common
interests between different datasets. This is an interesting
feature of multi-layer threat analysis: if a dataset contains
interests of threat, the other dataset may give the behavior
of malicious activities more deeply.

In this benchmark, we used a query across the two Hive
tables, Netflow records (i.e. netflow) and suspicious ZeuS
DGA domain name list (i.e. zeus dga result), as depicted in
figure 8. The query tries to find traffic flows that communicates
with the Command and Control (C&C) server detected by a
DNS traffic scan using JOIN operation of Hive and Presto-db.
The netflow table for one-month traffic has about 757,144,720
records while the zeus dga result table has 2,171 records.
Since the size of the netflow table is relatively big and a
query takes a long time for the JOIN operations, we carefully
looked at three different file formats available for the Hive
table, which are TextFile, SequenceFile, and RCFile
(Record Columnar File) [11], and observed the variance of
response time.� �

SELECT netflow.* FROM netflow
JOIN zeus_dga_result ON (zeus_dga_result.c2c_sv =
netflow.sa AND zeus_dga_result.dt=netflow.dt);� �

Fig. 8. Steps for an analysis module to seek suspicious flows through multiple
data sources.

Figure 9 represents the execution time of the query by Hive
and Presto-db as a function of the amount of data processed
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(i.e., days), along with the standard deviation computed for five
replications. We measured three different types of file struc-
ture (i.e., TextFile, SequenceFile, RCFile) stored in
HDFS.

When we used TextFile for the data structure, we did
not have a benefit in performance since the structure is not
able to correctly split the job processing across multiple nodes,
resulting in a small number nodes executing the query. On the
other hand, SequenceFile and RCFile are well designed
for splitting jobs under MapReduce environment or Presto-db
distributed SQL engine, and the performance improves.

Note that while Presto-db outperforms Hive with regular
expression matching as shown in previous sections, the result
is almost opposite with JOIN operation: Presto-db only out-
performs one-day data with SequenceFile and RCFile
structure.

V. USE CASES

In this section, we present several use cases of MATATABI
as a threat analysis platform with huge amount of data.

A. Implemented Analysis Modules

ZeuS DGA detector
The first case is the detection of compromised hosts by the
ZeuS botnet in an enterprise network by scanning DNS queries
with a particular pattern of domain names as used in § IV-A.
This module detects compromised hosts of ZeuS bot in a
managed network, where a host queries suspicious domain
names, based on the Domain Generation Algorithm (DGA),
is considered a potential compromised host. In the case of
proxied query via a DNS forwarder, we looked at traffic
information filtered by the IP address of DNS answer records
to identify the client IP address.

NTP amplifier detector
This module searches for Network Time Protocol (NTP)
servers sending traffic with a particular packet size correspond-
ing to a well-known NTP-amplification attack [15]. It reports
the IP addresses of NTP amplifiers, and the IP address and
Autonomous System (AS) number of targeted victims.

An additional module for the detector extracts NTP flows
at the backbone sampling traffic (i.e., sFlow records) and lists
the top ten NTP flows within a given time period.

Anomalous heavy-hitter detector
By using simple statistical tests, this modules detects IP
addresses sending or receiving an abnormally high number of
packets or bytes, for example, caused by DoS attacks.

Phishing likelihood calculator
This module is an implementation of a previously proposed
system [12], which provides a binary detection whether a
given URL points to a phishing site or not. The module
consists of dataset preparation by crawling contents on pre-
known phishing sites provided by PhishTank4, analyzed by
machine learning method with the help of Mahout. The dataset
is updated every day since phishing sites changes frequently.

DNS amplification detector
The module tries to detect anomalous DNS traffic, causing am-
plification attack which fills the link capacity and makes denial
of services. It looks at two different datasets, backbone sFlow
traffic records and a list of open DNS resolver servers [13],
and ranks top 10 speakers of DNS flow which communicates
with open resolvers in sFlow datasets.

UDP fragmentation
As realizing an additional way for cache poisoning attack on
DNS server based on IP fragmented packets [16], we started
to observe how much traffic employed fragmented packets
in the backbone traffic. The script simply extracts a record
from sFlow dataset and implements a counter-based detection
approach.

DNS anomaly detection
This module tries to detect anomalies of DNS response packets
by adapting a machine learning method. Various statistical
features such as IP addresses, the country code of DNS server,
Malware Domain List5, legitimate domain list, and the AS
number of the DNS server are used for the analysis.

SSL scan detector
This module extracts SSL/TLS scans sFlow traffic data, which
frequently happened right after the discovery of Heartbleed
bug in OpenSSL library. The module simply counts packets
destined to a specific port number, and containing the TCP
SYN flag.

DNS failure graph analysis
This module tries to find suspicious non-existing domain
names and IP addresses that might belong to botnets. The
analysis is an implementation of an existing method, DNS
failure graphs [14], based on a clustering technique.

Visualization
Figure 10 shows an example of visualization, representing a
ranking of frequent asked domain names that matched with
the regular expression of the ZeuS DGA, based on the result
which the module generates. This visualization is implemented
by using d3js6 with the data available via MATATAPI.

4http://www.phishtank.com/
5http://www.malwaredomainlist.com/
6http://d3js.org/
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TABLE III. ANALYSIS MODULES ON MATATABI.

Name datasets frequency LoC (#lines) remark

ZeuS DGA detector DNS pcap, netflow daily 25 hadoop-pcap
UDP fragmentation detector sflow daily 48

Phishing likelihood calculator [12] Phishing URLs, Phishing content 1-shot – Mahout (RandomForest)

NTP amplifier detector netflow, sflow daily 143 pyhive, Maxmind GeoIP
sflow daily 24

DNS amplifier detector sflow, open resolver [13] daily 37
Anomalous heavy-hitter detector netflow, sflow daily 106 pyhive

DNS anomaly detection DNS pcap, whois, malicious/legitimate
domain list

daily 57 hadoop-pcap, Mahout (RandomForest)

SSL scan detector sflow 1-shot 36
DNS failure graph analysis [14] DNS pcap daily 159 pyhive

Fig. 10. Visualization of the number of DGAed queries asked.

B. Summary

Table III summarizes all the implemented analysis modules
that we have come up with so far (almost for one year). Thanks
to the pre-processed data by import module of each dataset and
uniform programmability of MATATABI, multiple experiments
have been conducted. Furthermore, the script are small and
easy to implement, with most of the ranging from from 20 to
160 Lines of Code (LoC).

VI. DISCUSSIONS

Early warning on a threat: As the number of cyber-
attacks grows, detection mechanisms and countermeasures
against threats targeting at enterprise are becoming indispens-
able. The convention on cybercrime [17], which the Japanese
government has signed, states that the maximum duration for
preserving computer data shall be 90 days. Once a company
encounters a cyber-attack, it is required to analyze in detail
the information collected during the attack, contained in the
data logs, deploy countermeasures for both the source and
targets of the attack, and identify the range of influence. As
indicated with our benchmark in figure 5, MATATABI with
DNS querylog is able to process data from one month (31
days) within 500 seconds, and might be possible to process
within 20 minutes if the stored data spans a duration of 90
days. The hadoop-based infrastructure allows us to increase
the number of recorded information processed and gives a
potential to analyze multiple data sources for a long duration,
which include the target incident to be detected.

Best practice for implementing analysis module: cur-
rently Presto-db presents the best performance on simple data
querying as shown in § IV, but the software is still young and
has limitations on creating table onto the original database,
among others. Therefore we still use Hive for such operations
in the data import and analysis modules. Furthermore, the
performance result of SQL JOIN operation between Hive and
Presto-db suggests that Hive with RCFile achieves good
response time in our benchmarks, even for large amount of
parsed data. Calculations after the queries need different pro-
cessing on data and can use available utilities such as Rhadoop,
which is provided by the streaming feature of Hadoop.

Users can benefit from each method available for Hadoop
depending on what the analysis modules require.

The adaptability of open source tools: The open source
tools that we incorporated into our system, introduced ex-
tended functionality during initial deployment, without requir-
ing much effort to be invested during the software develop-
ment. Indeed, it requires to modify such software not only
fixing bugs in the original one, but also optimizations for our
purposes to handle the huge size of data7.

Using a combination of Apache Hadoop, Hive, and Face-
book Presto-db makes a faster deployment of our MATATABI
system, but introduces difficulties in terms of operating the
system. The issues we have faced so far are: 1) appropriate
resource dispatch between concurrent threat detections, 2)
inability to estimate each job’s duration, which may keep
occupying processors’ resource, 3) precise access control on
each job, among others. These are not originally addressed by
a particular software, and require careful system operation in
the end.

VII. RELATED WORK

P 3 [1] studied Hadoop platform to analyze a large amount
of traffic data, with improving RIPE hadoop-pcap by re-
ducing computational overhead. DDoS-Hadoop [2] extends P 3

to introduce a counter-based DDoS anomaly detection method
on Hadoop. Both very early studies are our basis and gave the
potential benefits of multi-terabytes traffic analysis with pcap
and netflow data.

Li et al. [3] proposed a system to classify the host roles
(i.e., clients or servers, etc) by using sFlow traffic with machine
learning supported Hadoop environment. Their objective is
to provide an analysis platform to detect hosts role from

7All of our modified and implemented modules are available at https://
github.com/necoma.
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measurement data in timely manner with an online system,
while P 3 was focused on an offline analysis. Our proposed
MATATABI is also based on an offline analysis, however
it is also possible to be an online system providing faster
performance to inspect packets and flows on the fly if further
optimization to the data access performance would be archived.

Hashdoop [18] introduced a way to speed-up the detection
of network anomalies by distributing heavy computations
among Hadoop cluster nodes. It shows 15 times speedup, at
maximum, compared to standalone version of detectors. Also,
accuracy evaluation with MAWILab [19] report as ground
truth data highlights better detection with Hashdoop. The key
benefit is to use hash function during job splitting to preserve
spatial and temporal structure of traffic dataset for the anomaly
detection. We plan to integrate their effort into our system in
near future.

VIII. CONCLUSIONS AND FUTURE WORK

We have reported MATATABI, a data collection and threat
analysis platform that uses the Hadoop environment. The
system has been designed to meet a set of requirements for
security threat analysis, and achieves scalability with uniform
programmable analysis module in a timely manner. Then we
have presented benchmarks on querying stored data and shown
speedups of up to 21 times (compared to a single machine),
when the backend of MATATABI uses Presto-db as a data
store. We have also showcased the use cases with our designed
analysis modules to detect cyber threats with small amount of
effort required for implementation.

Our system is running daily to analyze and detect security
incidents from collected data, but there is still room for
improvement on the system. At first, most of analysis with
MATATABI is running every 24 hours as batch processes,
but shorter period and hopefully real time analysis would be
desired for certain threats. That would pose another challenge
for the system’s design such as faster data import rather than
importing files collected by measurement sensors. Another
direction for a broader system design is to integrate the threat
information sharing system with the provisioning mechanism
for defense, making information pipeline for more resilient
mechanism on cyber-threats.
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Abstract—In this paper, we attempt to show how to build
a collaborative repository for cybersecurity data and threat
information by building on top of a privacy-aware storage system:
Tamias. We set the following goals: allow data sharing with a very
high level of control over the sharing scope, enhance collaboration
of entities that may not know each other but deal with similar
threats, and manage different levels of trust between each parties.
These levels of trust will define how much information is shared
with each entity.

I. INTRODUCTION

The Internet has radically changed the way that people
communicate. By providing a worldwide, almost unregulated,
information exchange system, it has made possible a large
number of innovations, with impact comparable to that of the
first newspaper, radio or television broadcasts.

However, the largely unregulated nature of the Internet and
the fact that users and corporations alike interconnect their
own information systems to this network, has also made it a
playing ground of unprecedented size for criminals. Certainly,
there are existing countermeasures. But similarly to the arms
race existing within the military industry, better defense tools
are soon followed by more sophisticated threats.

Of course, many entities are devoted to the study of these
threats and the gathering of cybersecurity-related information.
However, because of the trust issues raised by the impersonal
nature of communications on the Internet, these entities hardly
exchange any sensitive data. A Cybersecurity Emergency
Response Team (CERT) might provide information about an
attack against its network, after redacting the details of the
exact targets. By doing so, it makes sure that malicious parties
don’t try to exploit those victims further. But this might also
prevent other operators from getting crucial information about
potential victims-turned-sources of subsequent attacks.

Also, in many cases, datasets collected by entities monitor-
ing security information are very large. Within this data, one
must look for both known and unknown threats. Each entity
might have different algorithms to spot these threats, but given
the large amount of data, it is likely that some attacks are
not detected. So even sharing aggregated information about
detected threats might be insufficient in certain cases.

Finally, defense against cyber-threats requires collaboration
among defense entities because it is hard to get a global view
from within a single entity. But parties might not want to share
all their data with all their peers, for the trust reasons we have
mentioned previously, lowering the value of the collaboration.

In this paper, we will have a look at the existing threat
data exchange systems. We will then show how the Tamias [1]
distributed storage system can be leveraged to build a collabo-
rative repository for cybersecurity data and threat information.
We will first introduce the Tamias privacy-aware distributed
storage system, then detail each of the principles of the system
and how they can be adapted to build our repository: identities,
stored objects and federation.

II. RELATED WORKS

The need for sharing information in the context of cy-
bersecurity has always been evident. In this sense, there are
numerous recommendations and a few designs that try to tackle
this problem.

In [2], several suggestions are described for efficient data
sharing among CERTs, however the approach favored by the
authors is to use secure messaging systems such as PGP. While
this is an obvious choice for privacy and trust, it is cumbersome
to exchange large amounts of data. Also, it does not allow to
revoke access when the threat is gone.

Another work [3] known as fordrop (standing for Forensics
Dropbox) proposes an architecture for a social network about
threats that is based on the XMPP [4] and ActivityStreams [5]
standards and allows participants to publish information about
malware detected in their networks. However, this is especially
restricted to non-sensitive information, so that it does not have
to deal with trust and privacy issues.

On the other hand, standardization organizations have also
started working on sharing threat data, in order to define
exchange formats that can be used by all participants. In
the IETF, there has been work on the IODEF [6] format for
incident description. This standard only defines the exchange
format, and thus does not specify how various entities can
actually exchange information. At the ITU-T, work is still on-
going on the CYBEX [7] X.1500 standard, that will include the
definition of both the exchange format and overall architecture.

III. THE TAMIAS DISTRIBUTED STORAGE

Tamias is a distributed storage system built on top of
Tahoe-LAFS [8]. It adds identity and access capabilities
management, fine-grained sharing, access capability scoping,
and identity-related services. Tahoe-LAFS consists of a peer-
to-peer network of storage nodes. Each storage node hosts
indexed buckets of encrypted data. Prior to storage, objects
are encrypted on the local client with the key being based
on the hashed contents. In this system, knowing the storage
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index allows to retrieve encrypted contents, and knowing the
key allows to decrypt the object. In this Tahoe-LAFS system,
access is granted by sharing a capability consisting of the
storage index and encryption key. Thus the name of Least
Authority File System, because knowing the access capability
grants the right to share it further automatically.

In order to scope those access capabilities, Tamias intro-
duces an identity for each storage user. This identity is made
of a private/public keypair. The public key is shared with
other parties and allows to authenticate messages received, as
long as a proper introduction was made beforehand. Then,
this public-key is associated with each bucket that the storage
client uses. Furthermore, the storage server will not serve a
block to anyone else than the genuine client, or a client that
can show an access authorization signed by the actual owner
of the bucket.

This access authorization is made of several pieces of
information, such as the storage index to which the autho-
rization relates, an expiration date, and a target identity. The
whole is protected by a signature, precluding forgery. By using
these access authorizations, it is possible to share different
levels of information to different groups, at various trust levels.
For example, partners bound by a NDA might receive access
authorizations for raw data, whereas occasional partners only
get anonymized data, and another lower level of trust would
only gain access to aggregate results.

Finally, in order to ease the identity bootstrapping process,
Tamias provides a globally writable object known as the
phonebook. While everyone can publish to the phonebook,
each entry is signed by the user public-key. It is thus possible
for the entity to publish information about itself, such as
identity details, website, and so on. Actually, any kind of
information could be posted to the phonebook, since the
phonebook leverages RDF [9] to provide semantics.

The phonebook is an example of service that leverages
identities. There are other that are directly integrated with the
Tamias client. The inbox is another such service. For example,
if user Arthur and user Brutus trust each other, Arthur can
create an inbox dedicated to Brutus, and provide him the
access authorization to this object. Brutus can then write to
Arthur about new access authorizations, or any other RDF-
based information. The last integrated mechanism leveraging
identities is the public inbox. This is an inbox that is published
by Arthur in the phonebook and is writable by anyone. It
allows users that Arthur does not trust to write to him, for
example in order to self-introduce themselves to Arthur or
solicit access to specific data.

Relying on Tamias’ scoped sharing, identity properties and
identity services, we propose to build a collaborative repository
of cybersecurity data. Using access authorizations, entities can
have a very fine-grained control of what is being shared, and to
whom. It is also possible to use the phonebook mechanism to
publish general and public information about ongoing threats
and trigger collaboration with interested parties.

A. Identity Principles

We have explained in the previous subsection, that in
the Tamias storage system, each participant is defined by

his identity. For the purpose of building trust specifically for
sharing threat data information, offline exchange seems to be
the most trustworthy way. For example, if two entities already
have a trusted means of communication, they can use it for
this exchange of public keys.

On the other hand, in a sort of friend of a friend fashion,
participants can introduce their trusted peers to each other. This
is an integrated feature of Tamias (see Section III). Finally, we
also propose to extend the phonebook for reputation building.
With additional RDF grammar elements, it becomes possible
for an entity to publish a recommendation about another one.
By summing all those recommendations, an interested entity
can evaluate the reputation of a new partner. This provides
another metric for entities when choosing which partners to
trust.

B. Storage principles

In the Tamias storage system, it is possible to store objects
of arbitrary size. Once inside the storage, these objects can
not be easily leaked to the outside. Indeed, stealing the access
authorization of another entity is not sufficient to gain access.
Knowing the storage index, or even the encryption key, does
not grant access to the buckets.

In order to be able to fetch a block from a storage server,
a Tamias client must show an access authorization that was
signed by the actual owner of the file. The owner of the file
is the one whose public key has been recorded with the block
when it was first stored. Also, the access authorization itself
has a time limit, so that any authorization eventually expires.
Finally, block owners can revoke access authorizations directly
at the storage server level, if they want to stop an access
authorization before it expires.

In addition, since the storage network is distributed, access
to the data can be much faster, provided that the distribution is
consistent with respect to locality. Indeed, an increased number
of storage servers brings an increased number of resources,
thus making the system faster as it grows.

C. Federation principles

The global Tamias storage system in itself has been
designed to work as a federation of small Tamias storage
networks for scalability purposes. Using a federation of Tamias
networks allows each entity to host the datasets that it collected
and wants to be able to share. This way, it prevents the entity
from suffering from quota limitations in the storage network.

In addition to this, entities can now trust whole networks.
By doing this, each entity builds its own view of a global
repository where the information sources are limited to the
partners that they trust. Then, as for identities of separate
entities, it is possible to recommend networks to each other,
thus controlling the scope of information and the coverage of
the datasets.

IV. PREPARING TAMIAS FOR THREAT DATA

In this section, we introduce our proposal to build a
collaborative repository based on Tamias to share threat data.
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A. Data Semantics

One advantage of the Tamias storage system, is the fine-
grained sharing mechanism that allows to specify which user
can access which data in a very detailed way. As explained in
section III, access authorizations are sent to intended recipients
through their shared inbox using RDF tuples.

In addition to sharing messages, we propose to define the
following messages that describe datasets. They can be sent to
the intended user at the same time as the access authorization
itself.

Properties
This allows to describe the properties of the
dataset itself. For example, what kind of token can
be found inside: IP addresses, malware signatures,
packets, URLs, time range, and more. But it could
also be a reference to file types, e.g. pcap, sflow,
netflow, rfc822.

Analysis results
By attaching analysis results to the dataset, an
entity can tag its datasets for easier collaboration.
This way, a partner can try to look for datasets that
have specific results associated, such as traces of
NTP attacks, Zeus Botnet activity, etc...

Standards
An entity will use this kind of message to specify
that an object is described by an information
exchange standard. It could be IODEF [6], CY-
BEX [7], or the n6 [10] JSON format among
others.

Alternate view
This type of message allows to offer another view
of the dataset. Depending on the level of trust (see
subsection IV-B) between the sharing parties, an
alternate view might be the only view available.
For example, it might refer to an anonymized
version of the dataset.

Besides writing to intended recipients, users can also
choose to publish dataset-related information directly to the
public repository (the phonebook), or to a message box shared
by a task-force group.

B. Trust levels

For the purpose of easy and safe sharing of threat data
within our repository, we propose to define several trust levels.
The granularity of those levels is defined by the user, because it
depends on the kind of data and the relationships he maintains
with the other users of the system. For example, let’s consider
a dataset of packets coming from the sampling of a link traffic.
We can define the following levels of trust, from the highest
to lowest:

High
Sharing at this level grants access to the raw
dataset to the recipient. However, it is not exactly
similar to providing a copy of the dataset because
the access authorization will eventually expire.

Moderate
Sharing at this level grants access to an
anonymized version of the dataset. All details that

can identify a specific victim or person of interest
in the dataset have been altered.

Low
Sharing at this level only provides information
about a summary of the dataset. For example,
it could be the output of the various anomaly
detectors that have been run on the dataset.

Least
Sharing at this level will provide only information
about specific threat information. For example,
the IP source of an NTP attack, or a list of
malware signatures that have been spotted in the
dataset. This might allow to advertise the dataset
to unknown parties before starting the identity
exchange process.

C. Collaboration

In order to foster collaboration, it is important to go beyond
the usual partners of an entity and allow entities to discover
each other in the context of a specific threat.

For that purpose, we propose the creation of a distributed
journal of recent information. It is a message box similar to
the phonebook, but hosting information with a short lifetime.
Each entity can then publish, to this journal, any information
that is related to its current situation. It could be details of
an ongoing threat, or request for specific information. Other
entities can then look at this journal and find out if they can
relate to this information.

Another important feature that would enhance collabora-
tion is the creation of short-lived groups. These groups can
be created quickly and announced to the journal described
above. It allows to share directly with all the members at a
given trust level. Some examples of groups might be “DNS
reflection attack victims club”, but also “Botnet XYZ take-
down coordination center”. These groups eventually disappear
when the related activity is concluded.

Then, pursuing the publish/subscribe concept, we propose
a journal subscription application. This application runs locally
within the Tamias client and parses the journal updates to look
for any kind of information about which the user has specified
interest. The user can describe his subscriptions with full-text
search in new messages, or using keywords in conjunction with
the semantic attributes that underlie the journal itself.

D. Sharing lifetime

Finally, an important property of the Tamias storage system
is that access authorizations always expire. This helps to bring
a sense of safety to all the players because they can feel
confident that the data can not be misused at a later date.
In addition to this, we propose to extend the client revocation
mechanism with triggers. Whenever an access authorization is
created, the user has the opportunity to attach it to a trigger.
If this trigger is activated, the client will automatically revoke
access to all the authorizations involved. For example, Arthur
might choose to share its raw traffic sampling traces in the
context of a task force investigating NTP-amplification attacks.
Upon sharing, he decides to create an associated trigger that
he calls end of the NTP threat. At a later date, when the
NTP problem is dealt with, he just has to enable this trigger,
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at which point the client revokes access to the raw data
everywhere it was shared with this trigger.

E. Examples

CAT en�ty

RODENT en�ty

                      High trust rela�onship

SQUIRREL en�ty

       
  High trust rela�onship

Fig. 1. Trust relationships as they stand in the first example scenario.

1) Various trust levels and notifications: All the princi-
ples we have detailed here are illustrated in Figures 1–3. In this
example, we have three entities participating in the repository.
As seen in Figure 1, the entity on top is the CAT entity, while
we have SQUIRREL on the bottom left and RODENT on the
bottom right. RODENT trusts both SQUIRREL and CAT, but
SQUIRREL and CAT do not know each other.

RODENT en�tyCAT en�ty

Dataset 1 / has_type / pcap

Dataset 1 / has_token / IP 
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Dataset 1 / has_ac�vity / ZEUS
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Public journal
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...

...

Dataset 1 : 
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0x0030:  001d 21b3 1703 0300 3700 0000 0000 0001  ..!.....7.......
0x0040:  463d bad9 bcdf ec2f 1c5e 4454 3b64 c456  F=...../.^DT;d.V
0x0050:  a03d c0ef 5d31 9c84 871d 39da 6852 3c50  .=..]1....9.hR<P

0x0000:  4500 0034 52df 4000 4006 004e c0a8 0356  E..4R.@.@..N...V
0x0010:  adc2 75d6 9755 01bb 9a83 a372 47f5 3c51  ..u..U.....rG.<Q
0x0020:  8010 058c 4330 0000 0101 080a 001d 21e0  ....C0........!.
0x0030:  8c28 3cf7                                .(<.
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CAT en�ty's private storage
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CAT and RODENT (will expire)

Dataset 1 / has_ac�vity / ZEUS

Dataset 1 / has_�me / March

CAT / has_shared / Dataset 1

  expires April 30th

Dataset 1 / has_type / pcap

Dataset 1 / has_token / IP 

Dataset 1 / has_token / ports

Shares

Publishes

Fig. 2. The CAT entity stores Zeus-related activity in its private storage
space, publishes summarized related information to the phonebook and shares
it entirely with RODENT.

Now, we can see in Figure 2 that CAT owns a dataset
that it shared with RODENT. Since they trust each other, CAT
provided a large description about the dataset. It included the
type, time coverage, a list of tokens and the results of an
analysis for Zeus activity. Also, CAT decided that in order to
fight the Zeus botnet, it would publish summary information
informing all participants that it has traces of Zeus activity,
without any details about the dataset though.

SQUIRREL
en�ty Public journal

CAT / has_ac�vity / ZEUS
...

SQUIRREL / needs_ac�vity / ZEUS
...

RODENT / trusts / SQUIRREL
...

RODENT en�ty
1. Publishes

2. Subscribesto "ZEUS"
Local journal subscrip�on applica�on

3
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4. No�fies

CAT en�ty

1. Publishes

1. Publishes

Fig. 3. The SQUIRREL entity publishes its needs, it also subscribes to
Zeus-related updates and gets a notification.

Meanwhile, in Figure 3, SQUIRREL has published infor-
mation about its needs. Namely, people from the SQUIRREL
entity are looking at Zeus activity and are thus eager to find
more information about it. They publish this requirement to the
public journal. From then on, there are several possibilities. By
subscribing to Zeus information, SQUIRREL gets a notifica-
tion about the message that CAT has published. Otherwise,
SQUIRREL might also look at the journal and realize that
CAT has interesting data. Although they do not know each
other, RODENT actually trusts CAT and could serve as third-
party for introduction. Conversely, if CAT proactively looks for
more Zeus information, it might notice SQUIRREL request
and propose to establish a trust relationship, by seeing that
RODENT trusts SQUIRREL.

From this example, it appears that there are many ways
to take advantage of this system, but also, that the system
is not fully automated. This is an important point if entities
want to be sure that nothing happens outside of their control.
Even though CAT and SQUIRREL have a common friend, no
sharing happens before CAT decide to do so. If CAT chooses
not to trust SQUIRREL, notwithstanding that RODENT trusts
it, it can opt to not trust SQUIRREL nor share data with it.
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Fig. 4. The CAT entity decides it can trust SQUIRREL thanks to BADGERS
endorsement, however it only grants partial access to the data by providing
the anonymized version of the dataset.

2) Anonymization and fine-grained sharing: In Figure 4
we show how our system can be used to provide different views
of the dataset to entities that have different trust relationships.
In this example, we build upon the previous example and
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assume that the CAT entity has decided to mildly trust SQUIR-
REL, after it made sure that RODENT was actually trusting
SQUIRREL as well. In this situation, we see that the same
dataset is shared to both entities, however SQUIRREL receives
much less information compared to what RODENT already
had. This is because the anonymized dataset has jumbled
IP addresses and ports. For this reason, the present tokens
specified by CAT are not present in the sharing message with
SQUIRREL.

In this situation, we assumed that CAT already had an
anonymized version of the dataset, where IP addresses and
ports have been transformed to protect the actual values. In the
future, it might be possible to provide application plugins that
would be able to anonymize data prior to sharing with targets
such as SQUIRREL that do not satisfy the required trust level
for full access to the data. This kind of plugin would have to
be prepared once for each kind of threat data standard though.

V. CONCLUSION

We have proposed a system based on the Tamias distributed
storage to efficiently share large amounts of threat data. Our
solution enables fine-grained sharing of threat data with a per-
destination control of the amount of information provided.
Access policy is based on the identity of each destination and
its trust level as perceived by the owner of the threat data.

While this is a work in progress, we can already anticipate
that it will address some very important problems such as
provisioning trust into the threat data exchange system, limit-
ing the scope of sharing in both time and space, helping the
discovery of related datasets, and providing basic collaboration
tools for information sharing.

Our future work will of course include a prototype open-
source implementation based on the existing Tamias code,
which will lead to more detailed work on various aspects of
this specification. Nevertheless, we expect to reach interest-
ing results thanks to the unique and powerful nature of the
underlying Tamias storage system.

ACKNOWLEDGMENTS

This research has been supported by the Strategic Interna-
tional Collaborative R&D Promotion Project of the Ministry
of Internal Affairs and Communication, Japan, and by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 608533 (NECOMA).

REFERENCES

[1] J. Lorchat, C. Pelsser, R. Bush, K. Shima, H. S. (IIJ), and L. J.
(SUNET), “TAMIAS: a distributed storage built on privacy and iden-
tity,” in The 28th Trans European Research and Education Networking
Conference, 21 - 24 May, 2012, Reykjavik, Iceland, May 2012.

[2] ENISA - European Union Agency for Network and Information Se-
curity, “Detect, SHARE, Protect - Solutions for Improving Threat
Data Exchange among CERTs,” Nov 2013, https://www.enisa.europa.
eu/activities/cert/support/data-sharing.

[3] J. Berggren, “Social CERT,” The 28th Trans European Research and
Education Networking Conference, 21 - 24 May, 2012, Reykjavik,
Iceland, May 2012.

[4] XMPP Standards Foundation, “The Extensible Messaging and Presence
Protocol (XMPP),” http://xmpp.org.

[5] Activity Streams Community, “A format for syndicating social activities
around the web,” http://activitystrea.ms/.

[6] R. Danyliw and J. Meijer and Y. Demchenko, “RFC5070 - The Incident
Object Description Exchange Format,” http://www.ietf.org/rfc/rfc5070.
txt.

[7] A. Rutkowski, Y. Kadobayashi, I. Furey, D. Rajnovic, R. Martin,
T. Takahashi, C. Schultz, G. Reid, G. Schudel, M. Hird, and S. Adegbite,
“Cybex: The cybersecurity information exchange framework (x.1500),”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 5, pp. 59–64, Oct.
2010. [Online]. Available: http://doi.acm.org/10.1145/1880153.1880163

[8] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the Least-Authority
FileSystem,” in Proceedings of the 4th ACM international workshop
on Storage security and survivability. ACM, 2008, pp. 21–26.

[9] W3C/RDF Working Group, “The Resource Description Framework
(RDF),” http://www.w3.org/standards/techs/rdf.

[10] CERT Polska, “n6 - network security incident exchange,” http://www.
cert.pl/projekty/langswitch lang/en.

97


	Frontmatter
	Preface
	Program Chairs
	Publicity Chairs
	Publication Chairs
	Steering Committee
	Program Committee

	Full Papers
	ANDRUBIS - 1,000,000 Apps Later: A View on Current Android Malware Behaviors. Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum,Christian Platzer (Vienna University of Technology), Yanick Fratantonio (University of California, Santa Barbara), Victor van der Veen (VU University Amsterdam) 
	Security and Privacy Measurements in Social Networks: Experiences and Lessons Learned. Iasonas Polakis, Angelos D. Keromytis (Columbia University), Federico Maggi, Stefano Zanero (Politecnico di Milano)
	Classification of SSL Servers based on their SSL Handshake for Automated Security Assessment. Sirikarn Pukkawanna, Youki Kadobayashi (Nara Institute of Science and Technology), Gregory Blanc, Joaquin Garcia-Alfaro, and Hervé Debar (Institut Mines-Télécom, Télécom SudParis)
	Are We Missing Labels? A Study of the Availability of Ground-Truth in Network Security Research. Sebastian Abt, Harald Baier (Hochschule Darmstadt)
	EyeBit: Eye-Tracking Approach for Enforcing Phishing Prevention Habits. Daisuke Miyamoto, Takuji Iimura, Hajime Tazaki (The University of Tokyo), Gregory Blanc (Nara Institute of Science and Technology), Youki Kadobayashi (Institut Mines-Télécom, Télécom SudParis) 

	Short Papers Papers
	The Vulnerability Dataset of a Large Software Ecosystem. Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Diomidis Spinellis (Athens University of Economics and Business), Georgios Gousios (Delft University of Technology), Panagiotis Papadopoulos (Institute of Computer Science Foundation for Research and Technology, Hellas)
	MATATABI : Multi-layer Threat Analysis Platform with Hadoop. Hajime Tazaki, Kazuya Okada (The University of Tokyo, Japan), Kazuya Okada, Youki Kadobayashi (Nara Institute of Science and Technology, Japan)
	Collaborative repository for cybersecurity data and threat information. Jean Lorchat, Cristel Pelsser (Internet Initiative Japan), Romain Fontugne (National Institute of Informatics, Japan)


