
Computer Networks 85 (2015) 19–35

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Enabling security functions with SDN: A feasibility study

Changhoon Yoon a,∗, Taejune Park a, Seungsoo Lee a, Heedo Kang a, Seungwon Shin a,
Zonghua Zhang b

a KAIST, Graduate School of Information Security, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
b Institute Mines-Tlcom/TELECOM Lille of France, Department of Computer Science and Network, Rue Guglielmo Marconi, 59650

Villeneuve-d’Ascq, France

a r t i c l e i n f o

Article history:

Received 17 September 2014

Revised 10 April 2015

Accepted 5 May 2015

Available online 21 May 2015

Keywords:

Network security

Software-defined networking security

SDN security

a b s t r a c t

Software-defined networking (SDN) is being strongly considered as the next promising

networking platform, and studies regarding SDN have been actively conducted accordingly.

However, the security of SDN remains undefined and unknown when considering the en-

hancement of network security in SDN. In this paper, we verify whether SDN can enhance

network security. Specifically, the idea of enabling security functions with diverse SDN fea-

tures is explored thoroughly. In order to elucidate the feasibility of SDN-based security func-

tions, we implement four types of security functions with SDN in Floodlight applications: (i)

in-line mode security functions (e.g. firewalls and IPS), (ii) passive mode security functions

(e.g. IDS), (iii) network anomaly detection functions (e.g. scan and DDoS detector), and (iv) ad-

vanced security functions (e.g. stateful firewall and reflector networks). Furthermore, we focus

on discovering issues that might arise throughout the implementation of SDN-based security

applications and discuss how these issues can be addressed. In order to appropriately prove

the feasibility of the SDN-based security applications, we evaluate our Floodlight applications

in real testbeds that consist of SDN-enabled switches and a number of physical hosts.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Attracting significant attention from both academia and

industry, software-defined networking (SDN) has quickly

emerged as a new promising technology for future networks.

SDN separates the control plane from the data plane, and

thus it enables the easy addition of new, creative, and pow-

erful network functions/protocols. In academia, a number of

research ideas based on SDN/OpenFlow have been proposed

[1–8] since the publication of OpenFlow [9], which is a key

component in realizing the SDN concept. In industry, SDN is

widely considered to be the new paradigm for future net-
∗ Corresponding author. Tel.: +82 1053517101.

E-mail addresses: chyoon87@kaist.ac.kr (C. Yoon),

taejune.park@kaist.ac.kr (T. Park), lss365@kaist.ac.kr (S. Lee),

kangheedo@kaist.ac.kr (H. Kang), claude@kaist.ac.kr (S. Shin),

zonghua.zhang@telecom-lille.fr (Z. Zhang).

http://dx.doi.org/10.1016/j.comnet.2015.05.005

1389-1286/© 2015 Elsevier B.V. All rights reserved.
works. Many companies are deploying or planning to de-

ploy this technology in their system in order to strengthen

their network architectures, reduce operational costs, and

enable new network applications/functions. In 2011, com-

panies including Google, Juniper, Facebook, and Microsoft

have formed a specific organization, i.e. the Open Networking

Foundation [10], in order to accelerate the delivery and use

of SDN through promoting OpenFlow. In general, SDN is con-

sidered to be a critical information technology trend over the

next five years [11,12]. By 2016, the estimated knowledge dis-

covery investment for SDN is estimated to be approximately

US$2 billion [13]. Likewise, SDN is widely employed and is

being used in real world applications by pioneers around the

globe.

However, there is one area of SDN that requires fur-

ther development: security. As previously stated, SDN is con-

sidered to be a significant future network technology, and

it changes the current network architectures and services.

http://dx.doi.org/10.1016/j.comnet.2015.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.05.005&domain=pdf
mailto:chyoon87@kaist.ac.kr
mailto:taejune.park@kaist.ac.kr
mailto:lss365@kaist.ac.kr
mailto:kangheedo@kaist.ac.kr
mailto:claude@kaist.ac.kr
mailto:zonghua.zhang@telecom-lille.fr
http://dx.doi.org/10.1016/j.comnet.2015.05.005

20 C. Yoon et al. / Computer Networks 85 (2015) 19–35
Therefore, have security researchers (or practitioners) used the

SDN technology to enhance or replace the current security func-

tions? In our survey, only a handful of researchers have used

the SDN technology to enhance or replace the current se-

curity functions. For example, methods to detect network

anomalies (e.g. denial of service and network scans) [1,14]

or to enable firewall functionality [15] with SDN have been

proposed, and a framework that easily implements security

functions has been recently investigated [8]. This narrow in-

vestigation of SDN is not limited to academia, but is also

found in industry. For example, vArmour announced that

they would release a virtual firewall that can dynamically

control network flows [16], and we were not able to find any

other noticeable examples of commercialized SDN security

service products. Only the few examples of SDN implementa-

tion demonstrate that it could be used for security purposes

(i.e. specifically, realizing network security functions).

While many possibilities for designing security functions

with SDN can also be located, observing the real world ap-

plications of SDN-based security functions remains challeng-

ing. Moreover, most existing studies have only presented re-

search prototypes, not practical implementations. Another

question that should be addressed is: Can SDN technology

help in implementing decent network security functions or de-

vising advanced security functions? However, to date, there

has not been significant research undertaken to understand

this problem.

In order to answer this question, we implemented several

network security functions (e.g. firewalls, network anomaly

detectors, etc.) using SDN technology in Floodlight [17] appli-

cations. Floodlight is an enterprise-class, open-source, Java-

based OpenFlow controller, which is also the core of a com-

mercial controller product from Big Switch Networks [18].

Then, we analyzed them in various scenarios. Based on our

experiences while implementing these security functions,

we garnered diverse insights that will encourage others to

design different network security functions. From this work,

both researchers and practitioners can understand how they

could implement security functions without adding third

party devices. Through the example cases presented here, we

believe that researchers and practitioners could gain inspi-

ration to create their network security functions with SDN.

In addition, we investigate the diverse performance metrics

of the implemented functions in order to understand if they

are applicable in real world network. In order to understand

this, we explored the functions in a test-bed that represents

a real network environment. These analysis results can elu-

cidate the following problem: Can we use SDN-based security

functions in real world settings?

The contributions of this paper are summarized as fol-

lows.

• To date, our work is the first trial that examines real and

practical issues regarding the implementation of diverse

network security functions with SDN.

• We implement four different types of network security

functions with SDN that can be used in real life cases;

we also describe their design issues in detail. We believe

that our experience of designing these security functions

can assist other researchers and practitioners to devise

more practical network security functions and potentially
commercial products. In addition, our codes are in the

public domain in order to encourage other people to de-

velop better and more practical security functions.

• We provide insights and discussions based on our experi-

ence. We believe that these insights and discussions will

assist others to reduce mistakes in developing practical

SDN-based security functions. In addition, others can de-

sign more intelligent security functions based on our case

study. For example, in one of our experiments, we demon-

strate that we can implement a ReflectorNet (Section 5),

which was once a difficult task, through writing 400 lines

of code with the aid of SDN technology. It is our hope

that anyone can realize state-of-the-art security functions

through our insights and findings.

In Section 2, we introduce the conceptual design of a sim-

ple firewall function that could be enabled using SDN tech-

nology and the possible challenges or issues that might arise

when it was deployed on a real network in order to illus-

trate our problem domain. We present the research ques-

tions in this section as well, and we give the answers to the

questions in the rest of the sections by implementing four

types of security functions: (i) in-line mode (Section 3), (ii)

passive mode (Section 4), (iii) network anomaly detection

(Section 5), and (iv) advanced security functions (Section 6).

We believe that these four types of security functions rep-

resent the diversity of currently available security functions.

Thus, we expect that the investigation of these four functions

will reveal most possible issues that might arise in imple-

menting and deploying SDN security applications. Section 7

attempts to verify if the four types of SDN-based security

function implementations are feasible to be deployed to real

networks by evaluating each application that we implement

in this paper.

2. Motivating example and research question

In this section, we introduce an example SDN application

that serves as a simple network security function to describe

the problem that is addressed in this paper.

2.1. Motivating example

As the SDN technology becomes more widely deployed

and accepted, a number of interesting network applications

for the SDN platform have been devised, such as load balanc-

ing [19], WAN management [20,21], and network monitoring

[22] applications. Likewise, both researchers and practition-

ers have interests in devising security functions (specifically,

network security applications) using SDN. For example, a

technique that detects denial of service (DoS) attacks with

SDN functions has been proposed [1], scan detectors have

been implemented with SDN [14], and a novel framework

for developing security applications has been developed [8].

Most of the modern networks employ dedicated middle-

boxes for security purposes; however, such devices are costly,

bulky, and inflexible. If an SDN application could replace the

hardware-based network security appliances, it would en-

able incredible benefits. Then, how can we devise network se-

curity functions with SDN? In order to provide a foundational

answer to this question, we present a naive SDN-based fire-

wall application (A more profound SDN-based firewall such

C. Yoon et al. / Computer Networks 85 (2015) 19–35 21

Fig. 1. Conceptual firewall function implementation.
as FlowGuard [15] exists as well). With our firewall exam-

ple, we illustrate how the firewall function could be enabled

in an SDN platform. The firewall application, as depicted in

Fig. 1, issues flow rules in order to enforce an access control

list (ACL) to deny malicious trials.

In order to be more specific, a network operator may

specify a firewall policy or security policy. In Fig. 1, the

operator has set the firewall policy to block the flow that is

traveling from Host A (a known malicious host) to Host C. On

the data plane, when (1) Host A attempts to send a network

packet to Host C, the OpenFlow switch checks its flow table

if a flow rule entry to handle the packet exists. If no match

is found, (2) the packet is sent to the controller. Then, the

firewall application deployed in the controller receives

the packet as well as the other deployed applications. The

firewall application (3) parses the packet and (4) checks if it

matches any rule specified in the firewall policy. Since the

packet matches the rule “A→C: Block”, (5) the application

enforces the corresponding policy through instructing the

controller to block all packets that fall into the same flow.

Then, the controller (6) issues a flow rule to block the flow;

finally, (7) the rule is installed in the flow table of the switch.

Therefore, traffic that travels from Host A to Host C is dropped

at the switch as long as the rule remains in the flow table.

As this example illustrates, a firewall feature (even a dis-

tributed firewall) can be enabled without adding third party

devices through enabling a firewall function at each net-

work device. This straightforward implementation scheme

appears to be plausible; however, the firewall application

might not be as feasible as expected if it was deployed in

real networks. For example, it might issue excessive numbers

of flow rules and consume all flow table entries, which ulti-

mately causes collateral damage to the entire network. In ad-

dition, the firewall application might consume a significant

amount of resources, and consequently, incur overall perfor-

mance degradation to the network.

Likewise, regardless of how complex the security appli-

cation is, various problems may be faced in the SDN environ-

ment. An SDN application for network security services could

fail in real network settings or even face serious challenges

due to unforeseen constraints of the SDN environment. To

date, most existing studies have discussed the security is-

sues surrounding SDN [1,8,14,15]. In addition, they have only
provided some research prototypes, and their performance

in real networks has not been verified. Prior to the exten-

sive implementation or deployment of SDN-based network

security applications, their performance in real networks (or

testbeds with real devices) must be verified, and any notable

issues/constraints that might appear during the implemen-

tation or deployment of the application must be carefully ex-

amined, analyzed, and reviewed.

2.2. Research question

The firewall example presented in Fig. 1 implies that em-

ploying SDN technology in developing security functions will

face some challenging issues. The primary goal of this paper

is to examine whether SDN technology can be leveraged in

implementing practical, effective, and efficient network se-

curity functions. In order to achieve this goal, the following

key research questions must be investigated:

1. Can SDN-based security applications potentially replace

existing security appliances?

2. If possible, how can SDN-based security applications be

devised appropriately?

3. If not possible, what are the issues and how can they be

addressed?

If further information regarding or answers to these ques-

tions can be obtained, the goal is naturally achieved; thus,

the remainder of this paper focuses on discovering the an-

swers to each question.

3. In-line mode security applications

The prevalent in-line mode security functions were im-

plemented in Floodlight applications, and detailed descrip-

tions of their design and operation are provided in the fol-

lowing. In this section, we describe how each in-line mode

security function would behave on an SDN platform, then in-

troduce how each function could be implemented in Flood-

light application, and discuss about what are the advan-

tages and disadvantages of implementing this type of secu-

rity functions using SDN.

3.1. Firewall application

A Floodlight application with firewall functionality is

packaged with the Floodlight controller distribution. Al-

though it is under development (April 2014), the Floodlight

application used here is capable of performing basic firewall

tasks such as enforcing Access Control List (ACL) on Open-

Flow enabled switches (depicted in Fig. 1).

Since only limited and outdated information were pro-

vided in the Floodlight documentation, we have analyzed the

source code of the firewall application in order to completely

understand its operation. The operation of the Floodlight fire-

wall application is predominantly the same as the example

firewall operation introduced in Section 2 (Fig. 1).

The design of the firewall application is depicted in Fig. 2.

Upon initialization of the firewall, it reads the firewall rules

from the persistent database storage located in the controller

(via the IStorageSourceService interface). The rules are main-

tained in a sorted array in the memory, and they are sorted in

22 C. Yoon et al. / Computer Networks 85 (2015) 19–35

Fig. 2. Firewall application implementation.
decreasing order of assigned priority. Then, the firewall par-

ticipates in the OpenFlow (OF) message processing pipeline

as an IOFMessageListener instance and captures the Packet-In

(the first packet of network flow) messages.

For each incoming Packet-In message, the firewall com-

pares the header fields against each rule in the sorted list

sequentially from the highest priority. If the firewall finds

a matched entry, it stores the matching rules action (either

ALLOW or DENY a flow) in an IRoutingDecision object; this

IRoutingDecision object is added to the FloodlightContext ob-

ject that is created and dedicated to each Packet-In message.

This FloodlightContext object is also shared by other appli-

cations in the pipeline and thus it allows the Forwarding

application (the packet forwarding application included in

the Floodlight distribution) to recognize the firewall decision.

The firewall imposes a prohibitive policy through denying all

traffic by default; furthermore, it aims to match every single

packet against the firewall rules. Hence, the Forwarding ap-

plication uses Packet-Out messages to forward each packet.

It forwards a packet through sending a Packet-Out message

with an appropriate action for an ALLOW decision, while it

drops a packet through sending a Packet-Out message with-

out specifying an Output action for a DROP decision.

3.2. NIPS application

A network intrusion prevention system (NIPS) function is

one of the most prevalent network security functions: it ac-

tively detects and blocks any intrusion attempts on the net-

work.

Despite the rich benefits of SDN, the separation of the

control plane and data plane can become inefficient in

some specific cases. Particularly in an SDN network using
OpenFlow, the delivery of full packet information from the

data plane to the control plane is not supported (only packet

header information can be delivered to the control plane via

Packet-In message). Meanwhile, NIPS function implemented

in the SDN application needs to perform a full packet inspec-

tion against every single ongoing network packet on the data

plane, and hence enabling the full packet delivery to the con-

trol plane is one challenge that needs to be solved. Further-

more, NIPS must be in-line with the network traffic in order

to effectively block intrusion attempts, and satisfying this in-

line requirement might also be a challenge to enabling NIPS

functions on SDN. These challenges must be addressed in or-

der to enable NIPS functions on SDN platforms.

Conceptual design: We present an example scenario that

resolves the challenges stated above and thereby enables

NIPS functions on SDN platforms. The scenario involves three

hosts (A, B, and C) connected to an OpenFlow enabled switch

as illustrated in Fig. 3.

In this scenario, we assume that the intrusion prevention

service is provided to the traffic that flows from Host A to

Host C. The NIPS application initiates as (1) Host A sends data

traffic to Host C. When the traffic reaches the OF-enabled

switch, (2) the first packet of the flow is sent to the controller

and (3) it is passed to the NIPS. Then, the packet is analyzed

in order to determine if the entire flow should be forwarded

to the NIPS. (4) The NIPS notifies the controller that the flow

should be forwarded to the NIPS, and (5) the controller issues

the corresponding flow rule to instruct the switch to do so.

(6) The flow entry of “Add A→C: Forward to NIPS” is added to

the flow table of the switch; hence, (7) the flow is forwarded

to the NIPS. The NIPS captures all packets forwarded by the

switch, and (8) the packets undergo deep packet inspection,

and any malicious packets are dropped at this point. (9) The

C. Yoon et al. / Computer Networks 85 (2015) 19–35 23

Fig. 3. Conceptual NIPS function implementation.
sanitized flow is returned to the switch, and (10) the switch

queries the controller through sending the first packet of this

newly created flow coming from the NIPS. Then, (11–13) the

NIPS notifies the controller that the flow should be forwarded

to its original destination because the flow has already been

to the NIPS. Next, (14) the flow entry of “Add NIPS→C: For-

ward to C” is added to the flow table, and finally (15) the flow

arrives at its final destination.

Floodlight implementation: The design of our Floodlight

NIPS application is depicted in Fig. 4. The application consists

of three major components: the Forwarding, PacketHandler,

and PacketInspection modules. The Forwarding module is
Fig. 4. NIPS application i
designed to operate in a reactive manner. Upon the arrival of

a Packet-In message, the Forwarding module captures it using

the IOFMessageListener and builds a flow rule that instructs

the OF-enabled switch to forward the flow to the NIPS ap-

plication. However, such forwarding is not possible because

the NIPS application is not a valid network node visible to the

switch. In order to turn the NIPS application into a legitimate

network node, another dedicated network interface was de-

ployed between the control plane and data plane as depicted

in Fig. 4.

In order to instruct the network traffic to travel from the

source to the destination via the NIPS application, at least

two flow rules must be installed on an OF-enabled switch.

One flow rule forwards the network traffic that has not gone

through the NIPS application (or suspicious traffic) to the

NIPS, and another flow rule forwards the traffic that has gone

through the NIPS (or sanitized traffic) to the destination.

With the OpenFlow’s matching capability in the ingress

port, it is possible to efficiently determine if the traffic is

sanitized or not. In order to exploit this capability, we sup-

plied the ingress port number, which was dedicated for the

NIPS use, to the Forwarding module. Through specifying the

ingress port number in the flow rule, it is possible to enforce

different forwarding policies for the sanitized traffic and sus-

picious traffic. The Forwarding module forwards the sanitized

traffic to the destination, while it forwards suspicious traffic

to the NIPS, thus placing the NIPS in-line with the traffic.

Then, the network traffic forwarded to the NIPS appli-

cation is captured by the PacketHandler module, and each

captured network packet undergoes the packet inspection

process. We implemented the PacketInspection module to

compare the network packet with the Snort [23] rules in

order to filter out the malicious packets. The network packets
mplementation.

24 C. Yoon et al. / Computer Networks 85 (2015) 19–35

Fig. 5. Conceptual NIDS function implementation.
that passed the packet inspection process are returned to the

network via the network interface. We used the JPcap [24]

library to implement the feature of receiving and sending

the network packets.

3.3. Discussion

Why in-line mode security functions work in SDN: As

has been demonstrated, SDN can turn a network device into

a security device that performs access control or intrusion

prevention, and it provides three significant benefits. First,

additional third-party devices are not required to provide se-

curity services. All security functions proposed here are en-

abled within the network devices, not middleboxes. Second,

there is no need to spend time on determining the optimal

place for security devices in order to maximize the security

service coverage because each SDN-enabled device can func-

tion as a security device. Third, we can realize advanced, yet

difficult to implement, network security functions with ease.

For example, a distributed firewall, which is more effective

against internal threats, is typically expensive and complex

to implement; however, this function can be implemented

on an SDN platform through simply enforcing flow rules to

each network device for security purposes.

Why in-line mode security functions do NOT work in

SDN: The critical problem might be the SDN performance.

Most in-line security functions are required to manage net-

work flows as fast as they can because they should not af-

fect the overall network performance. This issue is carefully

investigated in Section 4. Another critical problem might oc-

cur when the flow rules for security purposes conflict with

the rules for non-security purposes. For example, if an ap-

plication conducting the network access control function en-

forces a flow rule to block flows from Host A, and another

application that performs network switching function issues

a flow rule to forward the same flow at the same time, the

data plane will be in an unpredictable state. This issue has

been addressed in previous work [15,25,26]; however, we

should aware that most systems (i.e. controllers) supporting

SDN functions remain vulnerable to such events.

4. Passive mode security applications

We also implemented one passive mode security applica-

tion in Floodlight, and it was a network intrusion detection

system (NIDS).

4.1. NIDS application

The NIDS function is not significantly different from the

NIPS function, except that it inspects the network traffic

in a passive manner; hence, enabling the NIDS function on

an SDN platform confronts similar challenges as those ad-

dressed in the NIPS case. However, one difference between

the two cases is that the NIDS function does not need to be

in-line with the network traffic in order to monitor the traffic.

That is, the traffic, which the NIDS wishes to monitor, should

be mirrored and forwarded to the original destination and

the NIDS concurrently.

Conceptual design: Here, we describe how the NIDS

function can be enabled on SDN platforms through
presenting a scenario with the same network topology that

was used in the scenario from the NIPS case. The NIDS func-

tion, which is enabled with SDN, simply compares the net-

work packets with the signature-based rules in order to de-

tect known threats.

The NIDS function can be enabled on SDN platforms as de-

picted in Fig. 5. The NIDS application also initiates as (1) Host

A sends a data flow to Host C. Since the flow is unknown to

the switch, (2) the first packet of the flow is sent to the con-

troller and (3) it is passed to the NIDS. Then, the NIDS de-

termines if the flow should go through the packet inspection

process. When the flow needs to go through the packet in-

spection, the NIPS notifies the controller that the flow should

be forwarded to both its original destination and the NIDS.

Next, (5) the controller issues the corresponding flow rule to

the switch, and (6) the flow entry of “Add A→C: Forward to

C and NIDS” is added to the flow table of the switch. Then,

(7) the switch duplicates the flow and concurrently forwards

each flow to its destination and the NIDS. Finally, (8) the

packets are forwarded to the NIDS for the inspection, and (9)

an alert is raised upon detection of malicious traffic.

Floodlight implementation: Unlike the case of the

Floodlight NIPS application, the NIDS implementation is

straightforward. The overall design of the Floodlight NIDS

implementation is almost identical to the design of the NIPS

implementation illustrated in Fig. 4. Note that the portions

colored in red only apply to the NIPS. For the NIDS, the net-

work traffic should be copied and sent to the NIDS as well

as its original destination. In addition to the OpenFlow’s ca-

pability of the matching ingress port, NIDS also supports the

identification of a set of actions to be taken (action set) in

a single flow rule. That is, it is possible to forward a match-

ing packet to multiple destinations through sending a single

flow rule. Leveraging this OpenFlow feature, the proposed

Forwarding module specifies both the original destination

and NIDS port number in the flow rule for each Packet-In

message. Furthermore, unlike the NIPS implementation, the

C. Yoon et al. / Computer Networks 85 (2015) 19–35 25

Fig. 6. Conceptual network anomaly detection function implementation.

Fig. 7. Network anomaly detection application implementation.
PacketInspection module for the NIDS only raises an alert for

detection.

4.2. Discussion

Why passive-mode security functions work in SDN:

Passive mode security applications commonly receive net-

work flows (or its information) from network devices

through a mirroring port. This can be undertaken simply

through enforcing multiple output actions (i.e. Fig. 5 (6)).

Moreover, SDN enables a network device to selectively de-

liver network flows to a passive mode security application.

For example, to monitor web traffic (i.e. flows heading to

port 80), the NIDS application can enforce a flow rule that

redirects the network flows with destination port 80 to the

NIDS, and it can enable the NIDS application to autonomously

choose the flow through referring to the network status.

Why passive security functions do NOT work in SDN:

As illustrated through our design, passive mode security ap-

plications require additional network interfaces between the

control plane and the data plane to collect full payload infor-

mation, which cannot be delivered through a control chan-

nel (e.g. an OpenFlow channel). Therefore, this could cause

developers to hesitate to apply the SDN technique in im-

plementing their security applications. We believe that SDN

needs to provide a method of overcoming this issue, and

Avant-Guard [27] may be a good solution. However, to date,

we have not found a commercial product that adapts this

technique.

5. Network anomaly detection applications

Network anomaly detection functions include detecting

network scans and distributed denial of service (DDoS) at-

tacks; these functions are also aggregated in closed and

proprietary security appliances in general. We present how

these functions can be enabled on SDN platforms and intro-

duce how they were implemented in real Floodlight applica-

tions with network scan and DDoS detection functionalities.

Unlike the descriptions of other security functions, we only

provide a detailed description of the network anomaly detec-

tors design and implementation because the detectors that

are presented here only differ in their detection algorithm.

The operations of network scan detectors and DDoS de-

tectors are similar because they both utilize network statis-

tics to detect network anomalies. The ease and flexibil-

ity of the anomaly detection algorithm implementation on

SDN platforms have been emphasized in previous research

[1,14,28]. For example, traditional network anomaly detec-

tion appliances (hardware-based) or applications (software-

based) manually measure the network statistics through

monitoring all network packets; however, through leverag-

ing the SDN, the network statistics can be efficiently mea-

sured because this information can be simply retrieved from

the data plane.

Conceptual design: The general network anomaly detec-

tion based on network statistics can be enabled on SDN plat-

forms as depicted in Fig. 6.

The network anomaly detection application actively mon-

itors the network status through (1) requesting network

statistic information from the controller. As requested, (2)
the controller sends the request message to reply with the

collected network statistic data. Then, (3) the data is sent to

the controller, and (4) it arrives at the application. Next, (5)

the application analyzes the data in order to extract the infor-

mation that the detection algorithm requires. Finally, (6) the

application makes detection decisions based on the informa-

tion and (7) raises alerts for the detection.

Floodlight implementation: The design of these network

anomaly detectors is illustrated in Fig. 7. As mentioned ear-

lier, this design represents both network scan detector and

DDoS detector Floodlight applications.

Network anomaly detectors should constantly and pe-

riodically collect network statistics, such as byte or packet

counts, from the switches on the network. The OF-enabled

switches are programmed to keep a record of flow-level net-

work statistics in the flow table. In Floodlight, this data can

26 C. Yoon et al. / Computer Networks 85 (2015) 19–35
be easily fetched via FloodlightProviderService. In our imple-

mentation, we created a thread that periodically requested

the flow table data from the controller within the application

(FlowTableHandler in Fig. 7). The flow table collection period

can also be supplied via the configuration file. Shortly after

the data collection process, the application aggregates and

analyzes the collected data in order to detect anomalies. The

constant values for the detection algorithm can also be sup-

plied through the configuration file.

5.1. Scan detector

We implemented the anomaly score [29] based scan de-

tection algorithm in our application. Upon the collection of

the network statistic information from the switch, the appli-

cation analyzed the collected data in order to compute the

anomaly score for each destination port. The pseudocode of

the algorithm is provided below.

function scan_detection(stats){

foreach(stat : stats){

port_map[stat.getDstPort()] += 1

counts += 1

}

foreach(port : port_map){

prob = port_map[port] / counts

learned_prob = learned_port_map[port]

anomalyscore += -log_2[prob/learned_prob]

}

if(threshold < anomalyscore){

alert();

}

}

5.2. DDoS detector

The algorithm implemented in the DDoS detection appli-

cation simply maintains a count of the number of bytes and

packets in order to derive the byte rate and packet rate from

the collected data. Its pseudocode is presented below in or-

der to provide a better understanding of the DDoS detection

mechanism that was used.

function ddos_detection(stats){

foreach(stat : stats){

bytes += stat.getByteCount()

counts += stat.getPacketCount()

}

bytes -= previous_bytes;

counts -= previous_counts;

bps = bytes/time_interval

pps = counts/time_interval

previous_bytes = bytes;
previous_counts = counts;

if(threshold_bps < bps|threshold_pps < pps){

alert();

}

}

5.3. Discussion

Why network anomaly detection functions work in

SDN: We believe that this type of application is representa-

tive of network security functions that benefit the most from

SDN. Network anomaly detection systems commonly require

a device (or a method) to collect network status information,

and this often places a burden on the network administrator.

However, if SDN functions are enabled in the network, the

network administrator does not need to collect the informa-

tion, because the detector can easily capture the network sta-

tus (even fine-grained flow information) without additional

devices or complicated configurations.

Why network anomaly detection functions do NOT

work in SDN: Indeed, through the SDN function, we can col-

lect network status information easily. However, we some-

times may need more information that is difficult to collect

in the current SDN environment; TCP session information is

a good example of this. We cannot collect this information

through simply sending a query to the data plane, but rather

it requires the enforcement of a set of flow rules (at least

more than two consecutive flow rules) on the data plane in

order to obtain this information. Furthermore, we must con-

sider how much overhead will be added to the data plane

through periodically sending this query to the data plane.

These issues will be discussed in Section 7.

6. Other advanced network security applications

For advanced security functions, we implemented the

stateful firewall and reflector network functions in the Flood-

light application. In this section, we describe the design and

operation of the stateful firewall and reflector network func-

tion implementations in detail.

6.1. Stateful firewall

Leveraging the programmability of SDN platforms, it is

possible to implement a more advanced firewall function. In

addition to the bundle firewall (stateless), we also introduce

the design and implementation of a stateful firewall function

that operates on SDN platforms.

Conceptual design: ACL-based stateless firewalls (dis-

cussed in Section 3.1) offer somewhat limited network us-

ability and high configuration complexity. In order to over-

come such disadvantages, stateful firewalls that dynamically

track the state of each connection have been proposed. For

example, a stateless firewall is incapable of supporting file

transfer protocol (FTP) operations because these protocols

open TCP connections to arbitrary high ports. In contrast, a

stateful firewall dynamically tracks the state of the valid con-

nections and allows any derived connection; thus, it is ca-

pable of supporting the FTP. Fig. 8 conceptually illustrates

C. Yoon et al. / Computer Networks 85 (2015) 19–35 27

Fig. 8. Conceptual stateful firewall design.
how the stateful firewall function can be enabled in SDN plat-

forms.

In order to elaborate on the operation of the stateful fire-

wall in SDN platforms, we demonstrate how the firewall al-

lows an FTP connection in the network depicted in Fig. 8.

We assume that the firewall enforces the security policy that

only allows FTP connections to the network. When (1) Host A

attempts to make an FTP connection (or sends an FTP request

packet) to Host C for the first time, (2) the OpenFlow-enabled

switch passes the packet to the controller. Once the firewall

application captures the packet, it (3) parses the packet and

(4) compares it with the packet in the state table, which

tracks every valid connection, in order to verify if the packet

belongs an existing connection being tracked in the table. If

the packet is a request packet that attempts to open a new

FTP connection, it is added to the state table as a new ta-

ble entry with the status indicating that it is awaiting a re-

sponse from the FTP server. If the packet neither belongs to

an existing connection nor a new connection request packet,

it is then (5) examined to determine if it is against the pre-

defined security policy. If the packet violates the policy, no

action is taken (or the packet is dropped). In contrast, if the

packet does not violate the policy, (6) the firewall application

installs appropriate flow rules to allow the connection. When

the packet (FTP request packet) has passed the inspection, (7,

8) it is forwarded to its destination (Host C). In response to

the request, (8) Host C replies with an arbitrary port number

for the data transfer. Since there is no matching rule in the

flow table of the switch, the response packet is sent to the

controller, and it undergoes the same firewall operation (3,

6). During these steps, the firewall learns that the response

packet belongs to the existing connection, and it also learns

the port number that will be used for the FTP data transfer.

Accordingly, (9) the firewall can allow the FTP connections

through installing two flow rules with the dynamically al-

located port number specified to the flow table. Ultimately,

unlike the stateless firewall, the stateful firewall function can

(10) allow complete and flawless FTP operations with SDN.

Floodlight implementation: As stateful firewalls track

the state of each connection, they must operate at the top

layer of the seven-layer OSI model. Meanwhile, as mentioned
above, due to the limited capability of OpenFlow, the higher

layers (i.e. higher than layer 4) are invisible to the control

plane. Hence, in order to enable stateful inspection, the state-

ful firewall implementation uses the design that utilizes an

additional network interface (as introduced in the NIPS/NIDS

implementations) as a side channel. Fig. 9 illustrates the de-

sign of our Floodlight stateful firewall implementation.

Our stateful firewall application also operates in a reactive

manner, which is the same as the stateless firewall applica-

tion. Once the application receives a Packet-In message, the

PacketParser module parses the message to extract the neces-

sary information, such as IP protocol, IP addresses, sequence

numbers, and TCP port numbers involved, and it passes the

information to the StateManager. In our implementation, the

stateful inspection is only performed on TCP connections. Ac-

cordingly, for each Packet-In, the StateManager determines if

the incoming packet is TCP-based or not. For non-TCP pack-

ets, the StateManager simply tests if the packet matches the

ACL and installs the appropriate flow rules (via FLOW_MOD)

in order to enforce the security policy. Meanwhile, for TCP

packets, the StateManager notifies the Forwarding module to

forward the corresponding raw packet to the side channel for

state inspection. Unlike how the firewall forwards non-TCP

packets, each TCP packet is forwarded using Packet-Out mes-

sages in order to successfully track the states of the connec-

tion through monitoring every packet in the connection. Each

connection information and its state are stored on StateTable,

which is a simple data table maintained by the StateManager.

The StateManager analyzes each raw packet that arrives via

the side channel and updates the corresponding StateTable

entry for the existing connections. For a new connection, the

StateManager registers a new StateTable entry with the state

of the connection completed. For example, an SYN packet

would be analyzed and registered to the StateTable as a new

table entry with its state flagged. The state flag indicates

that the firewall is expecting a legitimate SYN-ACK packet.

In some cases, like the FTP protocol, protocol-specific states

are defined (e.g. directory listing requests, awaiting the di-

rectory listing, etc.). When an FTP client connects to an FTP

server, the server responds with an arbitrary port number

that is then used to transfer data. Our firewall application is

designed to parse these protocol-specific responses and dy-

namically allow connections.

6.2. Discussion

Why stateful firewall function works in SDN: Stateful

firewall functions are generally implemented in closed and

proprietary appliances. For real deployment, there are many

issues to be considered, including the cost, space, opera-

tional cost, and so on. With SDN, it is possible to implement

the same functionality in an SDN application as described

above. The stateful firewall function can be implemented at

a low cost, and it does not require additional space for de-

ployment. The centralized structure also reduces the opera-

tional cost. Furthermore, the stateful firewall function may

require frequent firmware updates to support various pro-

tocols (e.g. FTP). In this form of closed and distributed de-

vice, it is often difficult to update, reconfigure, and main-

tain the appliances. In contrast, SDN applications provide

simple and convenient environments to perform such tasks.

28 C. Yoon et al. / Computer Networks 85 (2015) 19–35

Fig. 9. Stateful firewall application implementation.

Fig. 10. Conceptual ReflectorNet function implementation.
Furthermore, using the stateless firewall, it is possible to

realize a distributed stateful firewall that is effective against

internal as well as external threats.

Why stateful firewall function does NOT work in SDN:

When enabling stateful firewall functions with SDN, one

of the most important issues that need to be addressed is

the impact on network performance. As the stateful firewall

function operates in-line with the traffic, it directly affects

the network performance. As described in the implementa-

tion, it uses an additional network interface to retrieve the

raw packet that is involved in the connection that is being

monitored. Although such design incurs additional control

path delays as each packet travels to the control plane twice,

it is inevitable due to the limited capability of OpenFlow. The

network performance impact of our stateful firewall applica-

tion is discussed further in Section 7.3.

6.3. Reflector network

A reflector network (ReflectorNet) function redirects any

threats to a honeypot upon detection. This function can be

deployed to collect forensic evidence for various purposes.

Realizing the ReflectorNet function in legacy network plat-

forms is difficult, because the function requires a substan-

tially flexible and programmable network infrastructure to

redirect certain traffic successfully. On an SDN platform, this

function can be effectively enabled through leveraging the

OpenFlow capabilities of modifying and forwarding packets.

Conceptual design: We present an example scenario that

describes how the ReflectorNet function can be enabled on

an SDN platform. The scenario involves three hosts (A, B, and

honeypot) connected to an OpenFlow-enabled switch as il-

lustrated in Fig. 10.
As depicted in Fig. 10, the scenario begins with (1) Host

A sending data traffic to Host B, and (2) the switch transfers

the first packet of the flow to the controller. Then, (3) the Re-

flectorNet application parses the packet to extract any infor-

mation that the detection algorithm requires. Next, (5) the

ReflectorNet requests the controller to redirect the flow to

the honeypot. Then, (6) the controller issues the correspond-

ing flow rules, and consequently (7) the flow entries that are

redirected and the reverse flow are added to the flow table.

Finally, (8) the data traffic arrives at the honeypot as though

the honeypot was Host B.

Floodlight implementation: The design of our Floodlight

ReflectorNet application is presented in Fig. 11.

Similar to the other security applications introduced pre-

viously, the Floodlight ReflectorNet application also includes

C. Yoon et al. / Computer Networks 85 (2015) 19–35 29

Fig. 11. ReflectorNet application implementation.
the IOFMessageListener to capture the Packet-In messages.

The ReflectorNet initiates upon the arrival of a Packet-In mes-

sage and the ThreatDetection module analyzes the message

in order to verify if the flow is a threat. Instead of employ-

ing the scan detection module that already exists, the Threat-

Detection module was implemented to behave as a simple

blacklist-based detector to accurately evaluate the key fea-

ture of the ReflectorNet. The key feature is implemented in

the Forwarding module. The Forwarding module aims to ma-

nipulate both the source-to-destination and destination-to-

source flows in order to redirect each path of the connection,

and this manipulation task can be effectively accomplished

using OpenFlows set action. For the source-to-destination

flow, the set action is used to replace the destination field

of the packet header with the location of the honeypot, and

the output action is used to forward the flow to the honey-

pot. The Forwarding module specifies both actions as an ac-

tion set in a flow rule that is issued. The reverse connection

is managed in a similar way; thus, in order to enable the Re-

flectorNet function, the module only installs two flow rules

for each detected Packet-In message.

6.4. Discussion

Why ReflectorNet function works in SDN: Through writ-

ing only 400 lines of code, we were able to implement a

ReflectorNet function. This implies that such advanced net-

work security function, which may require an additional

hardware device to enable in the traditional network, can

be easily realized by taking advantage of the capability of

SDN. Currently, SDN provides numerous interesting tech-

niques to manage network flows, and it enables an ap-

plication to have a network-wide view. These features are

important when a network security function is designed,

because they can reduce the implementation burden. For
example, if the network devices in an enterprise network

should be monitored, then a sensor should be installed on

each network device, which is a tedious task. However, if we

consider SDN, the network application can see all network

statuses through simply sending a query to each network de-

vice. Likewise, the features that SDN provides enable the cre-

ation of complicated security functions with less effort.

Why ReflectorNet function does NOT work in SDN: Al-

though SDN provides numerous interesting features, it can-

not be the only solution. Some interesting features, such as

the QoS control of network flows, have not yet been imple-

mented in real devices, and thus we should carefully consider

whether the selected SDN features for implementing security

functions are currently available. In addition, the current SDN

functions have not critically considered the supporting secu-

rity functions. Therefore, although they can be easily added

to the current SDN architecture, many required features are

currently missing, and thus we (i.e. security-related people)

need to provide feedback to the wider SDN community.

7. Evaluation

In this section, we evaluate the Floodlight security appli-

cations in order to provide clear answers to the questions

raised in Section 2. We measure the performance of each ap-

plication in order to prove the feasibility of security applica-

tions on an SDN platform.

7.1. Experimental setup

In order to evaluate our work, we have constructed three

physical SDN testbeds, each consisting of an OpenFlow-

enabled switch, a controller machine, and three physical

hosts. Three OpenFlow-enabled switches (HP 3500yl, 3800

30 C. Yoon et al. / Computer Networks 85 (2015) 19–35

Table 1

Comparison of OF-switch performances.

HP 3500yl [30] HP 3800 [31] Pica8 P-3290 [32]

Switch fabric capacity 101.8 Gbps 88 Gbps 176 Gbps

Forwarding speed 75.7 Mpps 65.4 Mpps 132 Mpps

Latency 3.4 us 2.8 us 1 us

Routing table size 10,000 10,000 12,000

MAC table size 64,000 65,500 32,000

Table 2

Specifications of the machines deployed in the testbeds.

Type NIC CPU RAM OS

Controller 1 Gbps × 5 i5-4570 16 Gb Ubuntu 12.04 64 bit

Host 1 (H1) 1 Gbps i7-2640 M 8 Gb Ubuntu 12.04 64 bit

Host 2 (H2) 1 Gbps i5-2450 M 8 Gb Windows 7 64 bit

Host 3 (H3) 100 Mbps Atom N550 2 Gb Ubuntu 13.10 64 bit

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500 − 1000rules
HP 3500 − 5000rules
HP 3500 − 10000rules
HP 3800 − 1000rules
HP 3800 − 5000rules
HP 3800 − 10000rules
PICA8 − 1000rules
PICA8 − 5000rules
PICA8 − 10000rules

Fig. 12. Firewall application: throughputs for varying data rates and the

number of firewall rules.
and Pica8 P3290) were deployed in each testbed, and the

specifications of each switch are provided in Table 1.

We evaluate our work on three distinct testbeds with dif-

ferent switches in order to avoid biased performance mea-

surements that might result from switch-specific factors. The

specifications of the controller and host machines deployed

in the testbeds are described in Table 2.

In order to demonstrate the feasibility of various security

applications on SDN platforms, we measured the throughput

of each application for different data rates on each testbed.

For the experiment, we semi-randomly generated data traffic

for the applications that involve packet-matching processes

(firewall, NIDS, and NIPS). More specifically, we intention-

ally controlled the data traffic in order to not include a spe-

cific port number. Furthermore, we also generated the fire-

wall and Snort rules to include this port number so that the

application would be forced to match a packet against ev-

ery rule that exists in the given ruleset. For the remainder of

the applications, we randomly generated data traffic to mea-

sure the throughput. The traffic was sent from H1 to H2, and

we measured the number of packets received at H2. Unlike

other applications, the evaluation of the ReflectorNet appli-

cation involved the three hosts. In this case, the traffic was

sent from H1 to H2; however, the number of delivered pack-

ets were measured at H3.

For the stateful firewall application, we measured the la-

tency incurred during a specific FTP operation for one testbed

(HP 3500yl) and compared this result with the latency in-

curred during a simple learning switch application as a base-

line. For the latency experiment, we configured H1 to at-

tempt an FTP login and directory listing request to H2 (FTP

server), and we measured the time elapsed to complete the

FTP operations for each case.

7.2. Throughput evaluation

For each Floodlight security application, we plotted our

measurements in order to illustrate how the throughput of

the switches varies with respect to the data rate.

7.2.1. In-line mode security application

Firewall application: Fig. 12 demonstrates that the

throughput of the switch substantially degrades as the data
rate increases when the firewall is deployed. The firewall

included in the Floodlight distribution is designed to in-

spect every network packet. For this reason, a throughput

is observed for the higher data rates. Instead of sending a

Flow_Mod message that inserts a flow rule into the flow ta-

ble, the firewall sends a Packet-Out message to forward each

packet. The purpose of this design can be inferred from the

firewalls user interface. As depicted in Fig. 2, the firewall

policy can be dynamically changed via the REST API. We

presume that the Packet-Out message is used to effectively

enforce the dynamically changing firewall policy to every

packet. Overall, Pica8 outperformed both HP devices in this

case. Fig. 12 also shows how the number of firewall rules

loaded on the firewall (1000, 5000, and 10000 rules) affects

the throughput, and it can be implied that the number of fire-

wall rules does not noticeably affect the performance of the

switch.

NIPS application: The result of the NIPS application test

in Fig. 13 indicates that the NIPS application is capable of

managing the traffic with a data rate up to 100 Mbps with

1000 Snort rules. Compared with the firewall that does not

C. Yoon et al. / Computer Networks 85 (2015) 19–35 31

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500 − 1000rules
HP 3500 − 5000rules
HP 3500 − 10000rules
HP 3800 − 1000rules
HP 3800 − 5000rules
HP 3800 − 10000rules
PICA8 − 1000rules
PICA8 − 5000rules
PICA8 − 10000rules

Fig. 13. NIPS application: throughputs for varying data rates and the num-

ber of Snort rules.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500 − 1000rules

HP 3500 − 5000rules

HP 3500 − 10000rules

HP 3800 − 1000rules

HP 3800 − 5000rules

HP 3800 − 10000rules

PICA8 − 1000rules

PICA8 − 5000rules

PICA8 − 10000rules

Fig. 14. NIDS application: throughputs for varying data rates and the num-

ber of Snort rules.
install flow rules, the NIPS outperforms it because the NIPS

installs flow rules for each incoming flow and thereby re-

ceives significantly fewer Packet-In messages to handle. How-

ever, a problem arises when the application needs to match

packets against more than 5000 Snort rules.

Discussion: We expected that the payload delivery from

the data plane to the control plane would incur substan-

tial overhead; however, throughout the experiment, it was

found that it does not add significant overhead, but rather the

Packet-In messages affect the system. This result implies that

if our network does not produce new flows, causing Packet-

In messages, and there are less than 1000 matching rules, we

can use the SDN technique in deploying an in-line style se-

curity function. Hence, the networks that mostly carry long-

lived network flows, or that only requires the protection of

the network flows for certain critical services (e.g., web, mail,

or other services) may benefit from deploying SDN-based in-

line mode security applications. In addition, Buchanan et al.

demonstrated that the throughput of the in-line mode Snort

on a non-SDN platform substantially degraded when more

than 5000 Snort rules were loaded [33].

7.2.2. Passive mode security application

NIDS application: Just like the firewall evaluation, we

have measured the throughput of each switch device at dif-

ferent data rate and different number of Snort rules. In the

NIDS application, a significant performance gap between the

two switches was observed as depicted in Fig. 14. While Pica8

achieved a throughput of at least 70% up to a data rate of

500 Mbps, HP devices barely achieved a throughput of less

than 5%, regardless of the number of NIDS rules loaded by

the application. In order to better understand the issue, we

examined how each device inserted the flow rules into their

tables. We found that Pica8 maintained the flow rules in

its hardware table, while HP loaded the software flow ta-

ble when it needed to manage multi-forwarding rules (i.e.

send a packet to multiple output ports). Although only low

rate of network traffic was injected in our experiment, this

software-based flow table did not perform very well, and
thus we recommend that this type of device is not used in

this situation.

Discussion: Some devices try to manage SDN specialized

functions in software, and this will cause too much overhead.

However, if we can guarantee that SDN-enabled devices han-

dle all (or at least critical) functions in the hardware, then

we can use them to implement practical network security

functions. Alserhani et al. demonstrated that Snort achieved a

throughput of 70% for data rates from 500 Mbps to 700 Mbps

on a non-SDN platform [34]. Therefore, we can infer that our

NIDS application with the Pica8 switch is able to perform as

well as Snort on a non-SDN platform.

7.2.3. Network anomaly detection application

In order to evaluate our network anomaly detection appli-

cation, we measured a throughput of each switch device for

different data rate and different flow statistic query interval.

Scan detection application: The performance of the scan

detection application did not appear to be affected by the

flow table collection interval, rather the measurements in-

dicated that it depended on the performance of the switch as

depicted in Fig. 15. This clearly demonstrates that using SDN

in network status monitoring is a reasonable idea, and prac-

tical network anomaly detectors can be designed if they rely

on the information provided by the SDN functions.

DDoS detection application: As seen in Fig. 16, the DDoS

test results also depict similar results to those from the scan

detection. This is natural because the detector uses similar

features as the scan detector, and the only difference is the

decision mechanism whose overhead is minimal.

Discussion: SDN functions provide different network sta-

tus information, such as received packet counts of a flow, and

our experiments demonstrate that collecting this informa-

tion does not add significant overhead. If a network anomaly

detector (or other security sensor) is based solely on this col-

lection, the detector can be used in real-world environments.

7.2.4. Advanced security application

Reflector network application: For the reflector network

application, the throughput of the switches substantially

32 C. Yoon et al. / Computer Networks 85 (2015) 19–35

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500 Interval 1

HP 3500 Interval 5

HP 3500 Interval 9

HP 3800 Interval 1

HP 3800 Interval 5

HP 3800 Interval 9

PICA8 Interval 1

PICA8 Interval 5

PICA8 Interval 9

Fig. 15. Scan detection application: throughputs for varying data rates and

flow statistics query interval (in seconds).

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

110

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500 Interval 1

HP 3500 Interval 5

HP 3500 Interval 9

HP 3800 Interval 1

HP 3800 Interval 5

HP 3800 Interval 9

PICA8 Interval 1

PICA8 Interval 5

PICA8 Interval 9

Fig. 16. DDoS detection application: throughputs for varying data rates and

flow statistics query interval (in seconds).

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Data Rate (Mbps)

T
hr

ou
gh

pu
t (

%
)

HP 3500
HP 3800
PICA8

Fig. 17. ReflectorNet application: throughputs for varying data rates.

Table 3

Latency evaluation.

Learning switch Stateful firewall

Avg. latency (ms) 20.676 31.595
degraded as the data rate increased. Although Pica8 outper-

formed HP devices, both cases did not exhibit sufficient per-

formance that could be applied in real environments. For the

data rate of 1 Mbps, Pica8 achieved 100% throughput while

HP devices achieved 30%, as seen in Fig. 17. However, for the

data rate of 100 Mbps, both switches achieved a throughput

of less than 20%. This degradation also resulted from the han-

dling flow rules in the software. We found that all the devices

inserted SET actions, which modified the packet headers, into

their software rule table instead of the hardware table.

Discussion: Modifying the packet headers is one of the

most important features of SDN, and many previous studies

have proposed interesting and advanced network or security

functions [7,8,35]. However, if most network devices only im-

plement this feature in the software layer, the proposed ideas

cannot be realized in real cases because the performance be-

comes another critical problem in many cases.
7.3. Latency evaluation

Stateful firewall application: For the stateful firewall ap-

plication, the latency incurred during a legitimate FTP con-

nection establishment was measured. We also measured the

latency impact of the learning switch application, which

comes with the Floodlight distribution, as a baseline to eval-

uate our work.

As seen in Table 3, compared with the baseline learning

switch application, the performance overhead (in terms of

latency) that our stateful firewall application added was only

approximately 11 ms. Considering that the stateful firewall

performs packet-by-packet inspections and dynamic state

tracking at the control plane, we believe this overhead could

be overcome through adding more computing power to the

controller machine.

7.4. Insights

Based on the findings from our experiments, we provide

some insights that should be noted.

1. Reducing the number of control messages from the

data plane to the control plane (i.e., Packet-In) is much

more important than minimizing the delivery of packet

payload to the control plane. This event-driven control

mechanism is the basic principle of SDN, and thus it

is difficult to reduce the number of control messages.

Therefore, to implement and deploy time-critical security

functions on SDN platforms, we should consider another

solution such as a distributed control platform (e.g., Onix

[36], ONOS [37]) and a high-speed control platform (e.g.,

Beacon [38]).

2. Each data plane can provide interesting network status

information (e.g., bytes sent/received), and this implies

C. Yoon et al. / Computer Networks 85 (2015) 19–35 33
that the approach of regarding data planes as a type of

database is a feasible idea [39]. In the recent OpenFlow

specification, the data plane maintains diverse network

status information, and the information is available to the

SDN applications on the control plane. Leveraging such

capability of OpenFlow, it is possible to implement the

SDN applications that investigate network status.

3. Examining the supported SDN functions of each data

plane is very important. In particular, if performance is

important, the required functions that are supported at

the hardware level (i.e. provide reasonable performance)

should be considered carefully. In our experiments, we

showed that each network device does not necessarily

achieve the expected throughputs according to their gen-

eral performance specifications (i.e., forwarding speed,

latency, etc.) when the security applications were de-

ployed. Those who consider implementing or deploying

SDN-based security applications may find our work sig-

nificantly useful. For example, our work shows that the

switch devices comprising the network should support

hardware-based multi-forwarding to sufficiently secure

the network with SDN-based NIDS application.

4. There have been a few attempts to improve (or modify)

the existing SDN functionalities for significantly improv-

ing the performance of security functions or increasing

the ease of development of the functions. For example,

Avant-Guard [27] extends the data plane to increase the

performance, scalability and resiliency of SDN-based se-

curity services, and VeriFlow [40] adds an extra layer be-

tween the control and data planes to detect network-wide

invariant violations. To date, SDN techniques are mostly

leaded by network communities, and thus security of SDN

is often not considered. We hope security researchers ac-

tively dive into SDN and flourish the security functionali-

ties of SDN.

5. It is possible to implement in-line mode security func-

tions in SDN applications, and they are effective in some

particular networks that aim to provide security services

for a small number of network flows. Passive mode

security applications can be also useful if the network

devices comprising the managed network handle the

required SDN functions in the hardware. (In our exper-

iment, the Pica8 device supported hardware matching

for multi-port-forwarding, and outperformed the HP

devices.) In the case of network anomaly detection ap-

plications, fetching network status information via SDN

function do not incur significant overhead, and therefore

implementing such type of security functions in SDN

applications is a feasible idea. Meanwhile, the advanced

security applications (Reflector network) that attempt

to leverage SDN’s capability of modifying packet header

information are only effective if the network devices

process such modification in the hardware.

6. We also (partially) elucidate the feasibility of enabling

various security functions with Network Functions Virtu-

alization (NFV) technology. NFV is also an exciting tech-

nique that enables the delivery of useful network services

via virtualization technology, and it has a lot in common

with SDN. Particularly, in a sense that our security appli-

cations provide useful network security functions with no

hardware dependencies, they can also be considered as
NFV applications. Thus, those who consider providing se-

curity services in an NFV environment may benefit from

our experience as well.

8. Related work

Although most current SDN research is highly focused

on network related topics (e.g. network management and

network routing), there is some pioneering research relat-

ing to security issues with SDN. FortNOX presents the se-

curity problems of SDN (e.g. dynamic flow tunneling) and

their solution [25]; Shin et al. revealed that a type of net-

work flooding attack is feasible in an SDN network [41];

and Kreutz et al. summarize the possible security problems

in SDN [42]. These studies have provided valuable informa-

tion that assist SDN to become more secure. However, our

goal differs significantly: the main goal of this work is to in-

vestigate the possibility of designing practical security func-

tions with SDN. Huang et al. benchmarked three OpenFlow-

enabled switch models from different vendors and compared

them in order to demonstrate how the switch implementa-

tion design impacts network performance [43]. Again, our

work differs to theirs because our experiment involves not

only OpenFlow-enabled switches but also security applica-

tions. We focus on how different security applications affect

the overall throughput/latency with different switches in or-

der to clearly demonstrate the advantages and disadvantages

of enabling each security functions with SDN.

SDN techniques have also been applied in realizing net-

work security functions. In order to detect network flood-

ing attacks (e.g. DDoS attacks), Braga et al. proposed a

lightweight detector and they implemented the proposed

idea of the NOX platform [1]. Furthermore, OpenSketch pro-

vides an efficient network flow measurement scheme [22].

Mehdi et al. evaluated several algorithms in order to un-

derstand if they could effectively detect network scan at-

tacks [14]. FleXam designed a flexible sampling extension for

OpenFlow and demonstrated that it could detect a port scan

attack with an extremely low overhead [28]. Moreover, SDN

functions can be used in building different types of security

functions. Hu et al. presented a possible solution to make a

reliable firewall using the SDN technique [44], and vArmour

announced that they will release a dynamic firewall based

on SDN functions [16]. Moreover, a new framework for de-

veloping security applications using SDN has been recently

proposed [8]. In addition, Avant-Guard improves the current

SDN architecture to enable SDN to provide better security

services [27]. These studies illustrate that SDN can be used

for security purposes. However, they only present conceptual

ideas or research prototypes; thus, it is very difficult to under-

stand whether SDN really helps in developing practical secu-

rity functions. Our work begins investigating this issue, and

we attempted to discover the effectiveness, feasibility, and

efficiency of security functions based on SDN techniques.

9. Conclusion and future work

While the networking community has focused on SDN

and considers it as a promising future networking technol-

ogy, the security community is relatively slow in embracing

SDN technology. Many studies have adapted SDN to resolve

34 C. Yoon et al. / Computer Networks 85 (2015) 19–35

.

networking issues, and it remains as ongoing work. How-

ever, considering SDN in developing network security func-

tions remains in the early stages, and it is difficult to find case

studies that examine the feasibility, practicability, effective-

ness, and efficiency of network security applications based

on SDN technology. Our work does not introduce new secu-

rity functions; however, we present how the current security

functions could be changed in a new networking era (i.e. the

SDN network environment) through our experience of im-

plementing several network security functions with SDN. We

believe that the findings and insights discussed here can en-

courage security researchers to devise more and better secu-

rity functions. In our future work, we will implement more

network security applications in SDN and investigate if there

are further issues that should be considered. In addition, we

will deploy our applications in the real world, which will pro-

vide greater insights.

Acknowledgment

This work was supported by the ICT R&D program of

MSIP/IITP (grant no. 2014 044-072-003 Development of Cy-

ber Quarantine System using SDN Techniques).

References

[1] R.S. Braga, E. Mota, A. Passito, Lightweight DDoS flooding attack de-
tection using NOX/OpenFlow, in: Proceedings of the 35th Annual IEEE

Conference on Local Computer Networks, in: LCN, 2010.
[2] M. Canini, D. Venzano, P. Pereŝíni, D. Kostić, J. Rexford, A NICE way to

test OpenFlow applications, in: USENIX Symposium on Networked Sys-
tems Design and Implementation, 2012.

[3] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, N. McKeown, Elastictree: Saving energy in data center net-
works, in: Proceedings of the 7th USENIX Symposium on Networked

Systems Design and Implementation, NSDI, 2010.
[4] A. Nayak, A. Reimers, N. Feamster, R. Clark, Resonance: dynamic access

control for enterprise networks, in: Proceedings of WREN, 2009.
[5] L. Popa, M. Yu, S.Y. Ko, I. Stoica, S. Ratnasamy, CloudPolice: taking access

control out of the network, in: Proceedings of the 9th ACM Workshop

on Hot Topics in Networks, HotNets, 2010.
[6] R. Sherwood, G. Gibb, K.K. Yap, G. Appenzeller, Can the production net-

work be the testbed, in: Proceedings of USENIX Operating System De-
sign and Implementation, OSDI, 2010.

[7] S. Shin, G. Gu, CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks (or: How to provide security

monitoring as a service in clouds?), in: Proceedings of the 7th Work-
shop on Secure Network Protocols (NPSec’12), co-located with IEEE

ICNP’12, 2012.

[8] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, M. Tyson, FRESCO:
Modular composable security services for software-defined networks,

in: Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS’13), 2013.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling innovation in cam-

pus networks, SIGCOMM Comput. Commun. Rev. 38 (2008) 69–74.

[10] ONF: Open Networking Foundation, https://www.opennetworking.org/
[11] NetworkWorld, Gartner: 10 critical IT trends for the next five years,

http://www.networkworld.com/news/2012/102212-gartner-trends-
263594.html.

[12] M.T. Review, 10 emerging technologies: Tr10: software-defined
networking, http://www2.technologyreview.com/article/412194/tr10-

software-defined-networking/.

[13] EnterpriseNetworking, IDC: SDN a $2 billion market by 2016,
http://www.enterprisenetworkingplanet.com/datacenter/idc-sdn-

a-2-billion-market-by-2016.html.
[14] S. Mehdi, J. Khalid, S. Khayam, Revisiting traffic anomaly detection

using software defined networking, in: Recent Advances in Intrusion
Detection, 2011.
[15] H. Hu, W. Han, G.-J. Ahn, Z. Zhao, FlowGuard: Building robust firewalls
for software-defined networks, in: Proceedings of the Third Workshop

on Hot Topics in Software Defined Networking, HotSDN ’14, ACM, New
York, NY, USA, 2014, pp. 97–102, doi:10.1145/2620728.2620749.

[16] vArmour, http://www.varmour.com/.
[17] FloodLight, Open SDN controller, http://floodlight.openflowhub.org/.

[18] Big Switch Networks, http://www.bigswitch.com/.

[19] R. Wang, D. Butnariu, J. Rexford, OpenFlow-based server load balanc-
ing gone wild, in: Proceedings of Workshop on Hot Topics in Manage-

ment of Internet, Cloud, and Enterprise Networks and Services, HotICE,
2011.

[20] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
R. Wattenhofer, Achieving high utilization with software-driven wan,

in: Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM ’13, ACM, New York, NY, USA, 2013, pp. 15–26,

doi:10.1145/2486001.2486012.

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, A. Vahdat, B4:

Experience with a globally-deployed software defined WAN, in: Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, 2013.

[22] M. Yu, L. Jose, R. Miao, Software defined traffic measurement with
OpenSketch,

[23] Snort, Open source network intrusion detection system,

http://www.snort.org/.
[24] JPcap, A network packet capture library for Java,

http://jpcap.sourceforge.net/.
[25] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, G. Gu, A secu-

rity enforcement kernel for OpenFlow networks, in: Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, HotSDN

’12, 2012.

[26] Z.A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu, SIMPLE-fying mid-
dlebox policy enforcement using SDN, in: Proceedings of the ACM SIG-

COMM 2013 Conference on SIGCOMM, ACM, New York, NY, USA, 2013,
pp. 27–38, doi:10.1145/2486001.2486022.

[27] S. Shin, V. Yegneswaran, P. Porras, G. Gu, AVANT-GUARD: scalable and
vigilant switch flow management in software-defined networks, in:

Proceedings of the 20th ACM Conference on Computer and Commu-

nications Security (CCS’13), 2013.
[28] S. Shirali-Shahreza, Y. Ganjali, Efficient implementation of security ap-

plications in OpenFlow controller with flexam, in: IEEE 21st Annual
Symposium on High-Performance Interconnects, 2013.

[29] C. Krügel, T. Toth, E. Kirda, Service specific anomaly detection for net-
work intrusion detection, in: Proceedings of the 2002 ACM Sympo-

sium on Applied Computing, SAC ’02, ACM, New York, NY, USA, 2002,

pp. 201–208, doi:10.1145/508791.508835.
[30] HP, HP 3500 and 3500yl switch, http://h17007.www1.hp.com/us/en/

networking/products/switches/HP_3500_and_3500_yl_Switch_Series/
index.aspx.

[31] HP, HP 3800 switch, http://h17007.www1.hp.com/us/en/networking/
products/switches/HP_3800_Switch_Series/index.aspx.

[32] Pica8, Data sheet: Pica8 P-3290, http://www.pica8.com/documents/

pica8-datasheet-48x1gbe-p3290-p3295.pdf.
[33] W. Buchanan, F. Flandrin, R. Macfarlane, J. Graves, A methodology to

evaluate rate-based intrusion prevention system against distributed
denial-of-service (DDoS), in: Cyberforensics, 2011.

[34] F. Alserhani, M. Akhlaq, I.U. Awan, A.J. Cullen, J. Mellor, P. Mirchandani,
Snort performance evaluation, in: Proceedings of Twenty-Fifth UK Per-

formance Engineering Workshop, 2009.
[35] J.H. Jafarian, E. Al-Shaer, Q. Duan, OpenFlow random host mutation:

transparent moving target defense using software defined networking,

in: Proceedings of the First Workshop on Hot Topics in Software De-
fined Networks, HotSDN ’12, 2012.

[36] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, S. Shenker, Onix: a dis-

tributed control platform for large-scale production networks, in: The
Symposium on Operating Systems Design and Implementation (OSDI),

2010.

[37] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, et al., ONOS: towards an open, dis-

tributed SDN OS, in: Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ACM, 2014, pp. 1–6.

[38] OpenFlowHub, BEACON, http://www.openflowhub.org/display/Beacon.
[39] A. Wang, W. Zhou, B. Godfrey, M. Caesar, Software-defined networks as

databases, in: Presented as Part of the Open Networking Summit 2014

(ONS 2014), USENIX, Santa Clara, CA, 2014.
[40] A. Khurshid, W. Zhou, M. Caesar, P.B. Godfrey, Veriflow: verifying

network-wide invariants in real time, in: Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, HotSDN ’12,

2012.

http://dx.doi.org/10.13039/501100003621
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0009
https://www.opennetworking.org/
http://www.networkworld.com/news/2012/102212-gartner-trends-263594.html
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.enterprisenetworkingplanet.com/datacenter/idc-sdn-a-2-billion-market-by-2016.html
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0010
http://dx.doi.org/10.1145/2620728.2620749
http://www.varmour.com/
http://floodlight.openflowhub.org/
http://www.bigswitch.com/
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0012
http://dx.doi.org/10.1145/2486001.2486012
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0014
http://www.snort.org/
http://jpcap.sourceforge.net/
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0015
http://dx.doi.org/10.1145/2486001.2486022
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0018
http://dx.doi.org/10.1145/508791.508835
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3500_and_3500_yl_Switch_Series/index.aspx
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3800_Switch_Series/index.aspx
http://www.pica8.com/documents/pica8-datasheet-48x1gbe-p3290-p3295.pdf
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0024
http://www.openflowhub.org/display/Beacon
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0026

C. Yoon et al. / Computer Networks 85 (2015) 19–35 35
[41] S. Shin, G. Gu, Attacking software-defined networks: a first feasibility
study (short paper), in: Proceedings of ACM SIGCOMM Workshop on

Hot Topics in Software Defined Networking (HotSDN’13), 2013.
[42] D. Kreutz, F.M.V. Ramos, P. Verissimo, Towards secure and dependable

software-defined networks, in: Proceedings of ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking (HotSDN’13), 2013.

[43] D.Y. Huang, K. Yocum, A.C. Snoeren, High-fidelity switch models for

software-defined network emulation, in: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-

working, HotSDN ’13, ACM, New York, NY, USA, 2013, pp. 43–48,
doi:10.1145/2491185.2491188.

[44] H. Hu, G.-J. Ahn, W. Han, Z. Zhao, Towards a reliable SDN firewall, in:
Presented as Part of the Open Networking Summit 2014 (ONS 2014),

USENIX, Santa Clara, CA, 2014.

Changhoon Yoon is a Ph.D. student in Graduate

School of Information Security at KAIST working

with Dr. Seungwon Shin in Network and System
Security (NSS) Laboratory. He received his B.S. de-

gree in Computer Engineering from the EECS de-
partment of University of Michigan-Ann Arbor.

He received his M.S. degree in Information Se-
curity from KAIST. His research interests are in

the areas of network security, Software-Defined

Networking (SDN) security, and malware distri-
bution network.

Taejune Park is a M.S. Student in the Graduate
School of Information Security at KAIST working

with Dr. Seungwon Shin in NSS Lab. He received

his B.S. degree in Computer Engineering from Ko-
rea Maritime and Ocean University in Korea. His

research interests include security, SDN and soft-
ware development.

Seungsoo Lee is a M.S. student in the Graduate
School of Information Security at KAIST working

with Dr. Seungwon Shin in NSS Lab. He received
his B.S. degree in Computer Science from Soongsil

University in Korea. His research interests include
secure and robust SDN controller, and protecting

SDN environments from threats.
Heedo Kang is a M.S. student in the Department

of Information Security at KAIST working with Dr.
Seungwon Shin in NSS Lab. He received his B.S

degree in Computer Engineering from Ajou Uni-

versity in Korea. His research interests include
interdomain-routing using SDN.

Seungwon Shin is an Assistant Professor of
the Graduate School of Information Security

at Korea Advanced Institute of Science and
Technology (KAIST). He received his Ph.D. degree

from the Department of Electrical and Com-
puter Engineering at Texas A&M University. He

received his B.S. and M.S. degrees in Electrical

Engineering from KAIST in South Korea. His
research interests include designing secure SDN

architecture/infrastructure, analyzing and de-
tecting botnet, and protecting cloud-computing

environments from threats.

Zonghua Zhang is currently an Associate Profes-
sor of Institute Mines-Télécom/TELECOM Lille of

France. He is also affiliated with CNRS SAMOVAR
UMR 5157 as an associate researcher. Previously,

he worked as an Expert Researcher at the In-
formation Security Research Center of National

Institute of Information and Communications

Technology (NICT), Japan from April, 2008 to
April, 2010. Even earlier, he spent two years for

post-doc research at the University of Water-
loo, Canada and INRIA, France after earning his

Ph.D. degree in information science from Japan
Advanced Institute of Science and Technology

(JAIST) in 2006. He has participated in a number of national projects and
international collaboration projects, which cover a wide spectrum of secu-

rity research topics such as anomaly detection, network forensics, root cause

analysis, security management, reputation systems, wireless network secu-
rity, and cryptographic protocols. His current research is focused on large-

scale threat analysis, software-defined networking security, and privacy of
crowd sensing applications to smart city and eHealthcare.

http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0028
http://dx.doi.org/10.1145/2491185.2491188
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00161-9/sbref0030

	Enabling security functions with SDN: A feasibility study
	1 Introduction
	2 Motivating example and research question
	2.1 Motivating example
	2.2 Research question

	3 In-line mode security applications
	3.1 Firewall application
	3.2 NIPS application
	3.3 Discussion

	4 Passive mode security applications
	4.1 NIDS application
	4.2 Discussion

	5 Network anomaly detection applications
	5.1 Scan detector
	5.2 DDoS detector
	5.3 Discussion

	6 Other advanced network security applications
	6.1 Stateful firewall
	6.2 Discussion
	6.3 Reflector network
	6.4 Discussion

	7 Evaluation
	7.1 Experimental setup
	7.2 Throughput evaluation
	7.2.1 In-line mode security application
	7.2.2 Passive mode security application
	7.2.3 Network anomaly detection application
	7.2.4 Advanced security application

	7.3 Latency evaluation
	7.4 Insights

	8 Related work
	9 Conclusion and future work
	 Acknowledgment
	 References

