NECOMA Multilayer Threat Data Collection and Analysis Platform with Hadoop

Hajime Tazaki*, Kazuya Okada

*University of Tokyo, Japan: °NAIST, Japan

Motivation
Challenges in multi-layer threat analysis from measurement data
- Huge amount of data (I/O intensive)
- Kinds of datasets (Heterogeneous programming)
- Real-time analysis (scalable computations)

Hadoop gives us
- Scalable distributed computations
- Wide data I/O
- Flexible data access
 - E.g. SQL-like data query for threat detection
- Reusable existing programs

Fig.1 Overview of NECOMA/Hadoop Environment.

Designs
- Apache Hadoop
 - hadoop-pcap, presto/hive, Rhadoop, etc
- 8 physical nodes & 1 virtual node
- Plan to add more nodes
- HDFS (Hadoop Distributed File System)
 - For measurement data storage
 - 3.1TB (used)/7.3TB (total)
- Analysis modules
 - Written by HiveQL (presto), python, ruby, R
 - Daily report
- Report modules
 - Integrated with NECOMA/ter (JSON)
 - Plot, Email (any UNIX applications)

Fig.2 Components diagram of Hadoop environment.

Performance Study
Simple query speed benchmarks
- Hive (0.11): Map-reduced data warehouse w/ SQL-like query
- Presto (0.52++): distributed SQL query engine by Facebook

Query1: select qname, count(1) from querylog_part WHERE dt = '20131110' GROUP BY qname ORDER BY 2 desc limit 5;
Query2: select * from dns_pcaps WHERE regexexp_like (dns_question, '[a-z0-9][2-48]') AND NOT regexexp_like(dns_question, '\^\-') AND dt = '20131010';

Fig.3 Query response time (Hive and Prestodb)

Use-Cases
- Additional benchmarks (Hive/Presto/Streaming)
 - Provide recommendation for NECOMA purpose
- Performance tuning/optimization
 - For real-time analysis
- More analysis modules
 - SPAM + DNS + traffic
 - Eye-motion log + Phishing + DNS

Fig.4 ZeuS DGA detection: DNS + netflow.

Fig.5 DNS amplification track by DNS querylog + sflow.

Future Work
- NECOMA github repository: https://github.com/necoma

References
- NECOMA github repository: https://github.com/necoma